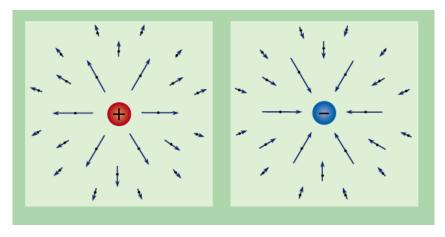
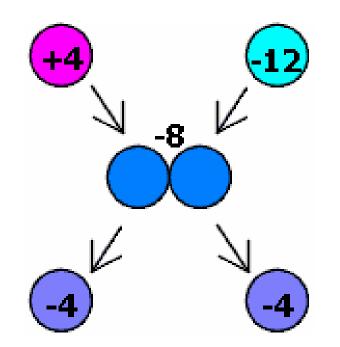
Electrostatics


Honors Physics

Electric Charge

"Charge" is a property of subatomic particles. Facts about charge:

- There are 2 types basically, positive (protons) and negative (electrons)
- LIKE charges REPEL and OPPOSITE charges ATTRACT
- Charges are symbolic of fluids in that they can be in 2 states, STATIC or DYNAMIC.


Electric Charge – The specifics

The symbol for CHARGE is "q"
The unit is the COULOMB(C), named after Charles Coulomb
If we are talking about a SINGLE charged particle such as 1 electron or 1 proton we are referring to an ELEMENTARY charge and often use, *e*, to symbolize this.

Particle	Charge	Mass
Proton	1.6x10 ⁻¹⁹ C	1.67 x10 ⁻²⁷ kg
Electron	1.6x10 ⁻¹⁹ C	9.11 x10 ⁻³¹ kg
Neutron	0	1.67 x10 ⁻²⁷ kg

Charge is "CONSERVED"



Charge cannot be created or destroyed only transferred from one object to another. Even though these 2 charges attract initially, they repel after touching. Notice the NET charge stays the same.

Conductors and Insulators

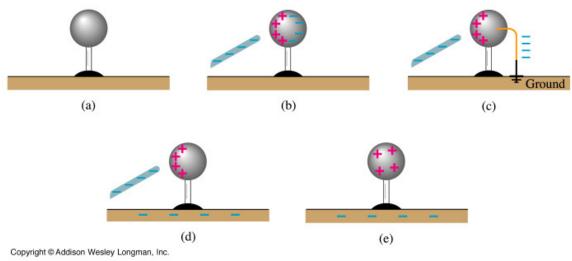
The movement of charge is limited by the substance the charge is trying to pass through. There are generally 2 types of substances.

Conductors: Allow charge to move readily though it. Insulators: Restrict the movement of the charge

Conductor = Copper Wire Insulator = Plastic sheath

Charging and Discharging

There are basically 2 ways you can charge something. "BION


- 1. Charge by friction
- 2. Induction

"BIONIC is the first-ever ionic formula mascara. The primary ingredient in BIONIC is a chain molecule with a positive charge. The friction caused by sweeping the mascara brush across lashes causes a negative charge. Since opposites attract, the positively charged formula adheres to the negatively charged lashes for a dramatic effect that lasts all day."

Induction and Grounding

The second way to charge something is via INDUCTION, which requires NO PHYSICAL CONTACT.

We bring a negatively charged rod near a neutral sphere. The protons in the sphere localize near the rod, while the electrons are repelled to the other side of the sphere. A wire can then be brought in contact with the negative side and allowed to touch the GROUND. The electrons will always move towards a more massive objects to increase separation from other electrons, leaving a NET positive sphere behind.

Electric Force

The electric force between 2 objects is symbolic of the gravitational force between 2 objects. RECALL:

$$F_{g} \alpha Mm \quad F_{g} \alpha \frac{1}{r^{2}}$$

$$F_{g} \alpha Mm \quad F_{g} \alpha \frac{1}{r^{2}}$$

$$F_{g} \alpha Mm \quad F_{g} \alpha \frac{1}{r^{2}}$$

$$F_{g} \alpha q_{1}q_{2} \quad F_{E} \alpha \frac{1}{r^{2}} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}}$$

$$F_{g} \alpha q_{1}q_{2} \quad F_{E} \alpha \frac{1}{r^{2}} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}}$$

$$F_{g} \alpha q_{1}q_{2} \quad F_{E} \alpha \frac{1}{r^{2}} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}}$$

$$F_{g} \alpha q_{1}q_{2} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}}$$

$$F_{g} \alpha q_{1}q_{2} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}}$$

$$F_{g} \alpha q_{1}q_{2} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}}$$

$$F_{E} \alpha q_{1}q_{2} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}}$$

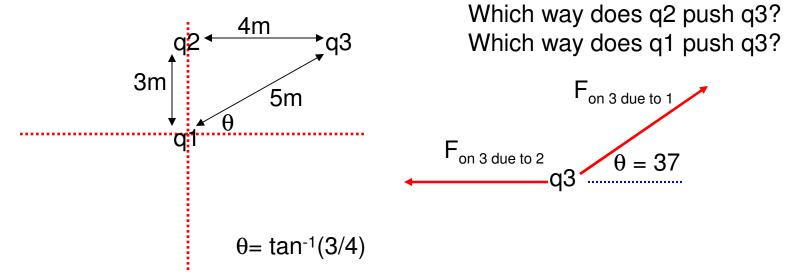
$$F_{E} \alpha q_{1}q_{2} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}}$$

$$F_{E} \alpha q_{1}q_{2} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}}$$

$$F_{E} \alpha q_{1}q_{2} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}}$$

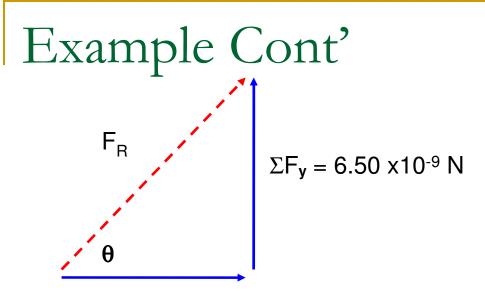
$$F_{E} \alpha q_{1}q_{2} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}} \quad F_{E} \alpha \frac{q_{1}q_{2}}{r^{2}}$$

Example


Calculate the separation distance between a 12C charge and a 6C charge is the electric force between them is 136.5 N

$$F_{e} = k \left| \frac{q_{1}q_{2}}{r^{2}} \right| \rightarrow r = \sqrt{k \frac{q_{1}q_{2}}{F_{e}}}$$

$$r = \sqrt{(8.99^{9}) \frac{(12)(6)}{(136.5)}} = 68,900.31 \text{ m}$$


What if you have MORE than 2 charges? Electric Forces are vectors, thus all rules applying to vectors must be followed.

Consider three point charges, $q_1 = 6.00 \times 10^{-9}$ C (located at the origin), $q_3 = 5.00 \times 10^{-9}$ C, and $q_2 = -2.00 \times 10^{-9}$ C, located at the corners of a RIGHT triangle. q_2 is located at y= 3 m while q_3 is located 4m to the right of q_2 . Find the <u>resultant</u> force on q_3 .

Example Cont'

$$f_{3,1} = 1.08 \times 10^{9}$$
 $f_{3,1} = 1.08 \times 10^{8}$ $f_{3,1} = 1.08 \times 10^{8}$ $f_{3,1} = 1.08 \times 10^{4}$ f

 $\Sigma F_x = 3.01 \text{ x} 10^{-9} \text{ N}$

$$F_R = \sqrt{(\sum F_x)^2 + (\sum F_y)^2} = 7.16 \text{ x10-9 N}$$

$$\theta = \tan^{-1}(\frac{\sum F_y}{\sum F_x}) = 65.2$$
 degrees above the +x axis