Work

Read from Lesson 1 of the Work, Energy and Power chapter at The Physics Classroom:

http://www.physicsclassroom.com/Class/energy/u5l1a.html http://www.physicsclassroom.com/Class/energy/u5l1aa.html

MOP Connection: Work and Energy: sublevel 1

l.	An impulse is a force acting over sor	ne amount of time to cause a change in momentum.	. On the
	other hand, work is a	_ acting over some amount of	to cause a
	change in		

2. Indicate whether or not the following represent examples of work.

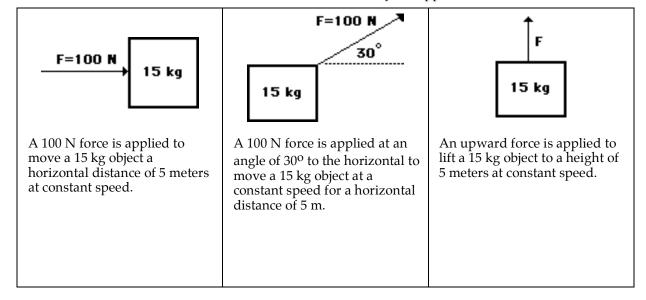
Work Done?

a. A teacher applies a force to a wall and becomes exhausted. Explanation: b. A weightlifter lifts a barbell above her head.	Yes or No?
b. A weightlifter lifts a barbell above her head.	
Explanation:	Yes or No?
c. A waiter carries a tray full of meals across a dining room at a constant speed. Explanation:	Yes or No?
d. A rolling marble hits a note card and moves it across a table. Explanation:	Yes or No?
e. A shot-putter launches the shot. Explanation:	Yes or No?

- 3. Work is a ______; a + or sign on a work value indicates information about _____.
 - a. vector; the direction of the work vector
 - b. scalar; the direction of the work vector
 - c. vector; whether the work adds or removes energy from the object
 - d. scalar; whether the work adds or removes energy from the object

- 4. Which sets of units represent legitimate units for the quantity *work*? Circle all correct answers.
 - a. Ioule

- b. Nxm
- c. Foot x pound
- d. kg x m/sec
- e. $kg \times m/sec^2$
- f. $kg \times m^2/sec^2$



The amount of work (W) done on an object by a given force can be calculated using the formula

$W = F d \cos \Theta$

where **F** is the force and **d** is the distance over which the force acts and Θ is the angle between **F** and **d**. It is important to recognize that the angle included in the equation is not *just any old angle*; it has a distinct definition that must be remembered when solving such work problems.

5. For each situation below, calculate the amount of work done by the applied force. **PSYW**

- 6. Indicate whether there is positive (+) or negative (-) work being done on the object.
 - a. An eastward-moving car skids to a stop across dry pavement.
 - ____ b. A freshman stands on his toes and lifts a **World Civilization book** to the top shelf of his locker.
- _____ c. At Great America, a roller coaster car is lifted to the peak of the first hill on the Shock Wave.
- d. A catcher puts out his mitt and catches the **baseball**.
- e. A falling **parachutist** opens the chute and slows down.
- 7. Before beginning its initial descent, a roller coaster car is always pulled up the first hill to a high initial height. Work is done on the car (usually by a chain) to achieve this initial height. A coaster designer is considering three different angles at which to drag the 2000-kg car train to the top of the 60-meter high hill. Her big question is: which angle would require the most work?

 ______ Show your answers and explain.

Angle	Force	Distance	Work
35°	1.15 * 10 ⁴ N	105 m	
45°	1.41 * 10 ⁴ N	84.9 m	
55°	1.64 * 10 ⁴ N	73.2 m	

8. The following descriptions and their accompanying free-body diagrams show the forces acting upon an object. For each case, calculate the work done by these forces; use the format of force \bullet displacement \bullet cosine(Θ). Finally, calculate the total work done by all forces.

Free-Body Diagram			Work on the C C Done by Eac		
a. A 10-N force is applied to push a block across a frictionless surface for a displacement of 5.0 m to the right.	W _{norm} =	•	• cos() =	J
↑F _{norm} =20 N	W _{app} =	•	• cos() =	J
→ F _{app} =10 N	Wgrav =	•	• cos() =	J
F _{grav} =20 N	W _{total} =				J
b. A 10-N frictional force slows a moving block to a stop along a	W _{norm} =	•	• cos() =	I
horizontal surface after a displacement of 5.0 m to the right.	$W_{\text{grav}} = \underline{\hspace{1cm}}$) =	, J
↑F _{norm} =20 N	W _{frict} =) =	J
F _{frict} =10 N←	W _{total} =				J
F _{grav} =20 N					
c. A 10-N forces is applied to push a block across a frictional surface at	W _{norm} =	•	• cos() =	J
constant speed for a displacement of 5.0 m to the right.	W _{app} =	•	• cos() =	J
F _{frict} = F _{norm} =20 N	Wgrav =	•	• cos() =	J
10 N F _{app} =10 N	Wfrict =	•	• cos() =	J
F _{grav} =20 N	W _{total} =				J
d. A 2-kg object is sliding at constant speed across a frictionless surface for a					
displacement of 5.0 m to the right. † F _{norm} =20 N	W _{norm} =				
	Wgrav =	·•	• cos() =	J
	W _{total} =				J
↓F _{gray} =20 N					

Free-Body Diagram	Forces Doing Work on the Object Amount of Work Done by Each Force
e. A 2-kg object is pulled upward at constant speed by a 20-N force for a vertical displacement of 5.0 m. F _{tens} =20 N F _{grav} =20 N	W _{tens} = • • cos() = J W _{grav} = • cos() = J W _{total} = J
f. A 2-kg tray of dinner plates is held in the air and carried a distance of 5.0 m to the right.	W _{app} = • • cos() = J W _{grav} = • _ • cos() = J W _{total} = J

- 9. When a force is applied to do work on an object, does the object always accelerate? ______Explain why or why not.
- 10. Determine the work done in the following situations.
 - a. Jim Neysweeper is applying a 21.6-N force downward at an angle of 57.2° with the horizontal to displace a broom a distance of 6.28 m.
 - b. Ben Pumpiniron applies an upward force to lift a 129-kg barbell to a height of 1.98 m at a constant speed.
 - c. An elevator lifts 12 occupants up 21 floors (76.8 meters) at a constant speed. The average mass of the occupants is 62.8 kg.