\qquad

Work

Read from Lesson 1 of the Work, Energy and Power chapter at The Physics Classroom:
http://www.physicsclassroom.com/Class/energy/u5l1a.html
http://www.physicsclassroom.com/Class/energy/u5l1aa.html

MOP Connection: Work and Energy: sublevel 1

1. An impulse is a force acting over some amount of time to cause a change in momentum. On the other hand, work is a \qquad acting over some amount of \qquad to cause a change in \qquad _.
2. Indicate whether or not the following represent examples of work.

Work Done?

a.A teacher applies a force to a wall and becomes exhausted. Explanation:	Yes or No?	
b.A weightlifter lifts a barbell above her head. Explanation:	Yes or No?	
	A waiter carries a tray full of meals across a dining room at a constant speed. Explanation:	Yes or No?
		Yes or No?
d.A rolling marble hits a note card and moves it across a table. Explanation:	Yes or No?	
e.A shot-putter launches the shot. Explanation:		

3. Work is a \qquad ; a + or - sign on a work value indicates information about \qquad .
a. vector; the direction of the work vector
b. scalar; the direction of the work vector
c. vector; whether the work adds or removes energy from the object
d. scalar; whether the work adds or removes energy from the object

4. Which sets of units represent legitimate units for the quantity work? Circle all correct answers.
a. Joule
b. Nxm
c. Foot x pound
d. $\mathrm{kg} \times \mathrm{m} / \mathrm{sec}$
e. $\mathrm{kg} x \mathrm{~m} / \mathrm{sec}^{2}$
f. $\mathrm{kg} \times \mathrm{m}^{2} / \mathrm{sec}^{2}$

BEYARE

The amount of work (W) done on an object by a given force can be calculated using the formula

$$
\mathbf{W}=\mathrm{Fd} \cos \Theta
$$

where \mathbf{F} is the force and \mathbf{d} is the distance over which the force acts and $\boldsymbol{\Theta}$ is the angle between \mathbf{F} and \mathbf{d}. It is important to recognize that the angle included in the equation is not just any old angle; it has a distinct definition that must be remembered when solving such work problems.
5. For each situation below, calculate the amount of work done by the applied force. PSYW
A 100 N force is applied to
move a 15 kg object a
horizontal distance of 5 meters

at constant speed. | A 100 N force is applied at an |
| :--- |
| angle of 30° to the horizontal to |
| move a 15 kg object at a |
| constant speed for a horizontal |
| distance of 5 m. |

6. Indicate whether there is positive (+) or negative (-) work being done on the object.
\qquad a. An eastward-moving car skids to a stop across dry pavement.
\qquad b. A freshman stands on his toes and lifts a World Civilization book to the top shelf of his locker.
\qquad c. At Great America, a roller coaster car is lifted to the peak of the first hill on the Shock Wave.
d. A catcher puts out his mitt and catches the baseball.
\qquad e. A falling parachutist opens the chute and slows down.
7. Before beginning its initial descent, a roller coaster car is always pulled up the first hill to a high initial height. Work is done on the car (usually by a chain) to achieve this initial height. A coaster designer is considering three different angles at which to drag the $2000-\mathrm{kg}$ car train to the top of the 60 -meter high hill. Her big question is: which angle would require the most work?

Show your answers and explain.

Angle	Force	Distance	Work
35°	$1.15 * 10^{4} \mathrm{~N}$	105 m	
45°	$1.41 * 10^{4} \mathrm{~N}$	84.9 m	
55°	$1.64 * 10^{4} \mathrm{~N}$	73.2 m	

8. The following descriptions and their accompanying free-body diagrams show the forces acting upon an object. For each case, calculate the work done by these forces; use the format of force • displacement • cosine (Θ). Finally, calculate the total work done by all forces.

Free-Body Diagram	Forces Doing Work on the Object Amount of Work Done by Each Force
a. A $10-\mathrm{N}$ force is applied to push a block across a frictionless surface for a displacement of 5.0 m to the right.	$\mathrm{W}_{\text {norm }}=$ \qquad \qquad - $\cos ($ \qquad) $=$ \qquad J $\mathrm{W}_{\mathrm{app}}=$ \qquad - \qquad - $\cos ($ \qquad $)=$ \qquad J $\mathrm{W}_{\text {grav }}=$ \qquad \qquad - $\cos ($ \qquad $)=$ \qquad J $\mathrm{W}_{\text {total }}=$ \qquad J
b. A 10-N frictional force slows a moving block to a stop along a horizontal surface after a displacement of 5.0 m to the right.	$\mathrm{W}_{\text {norm }}=$ \qquad \qquad - $\cos ($ \qquad) \qquad J $\mathrm{W}_{\text {grav }}=$ \qquad - \qquad - $\cos ($ \qquad $)=$ \qquad J $\mathrm{W}_{\text {frict }}=$ \qquad \qquad -- $\cos ($ \qquad $)=$ \qquad J $\mathrm{W}_{\text {total }}=$ \qquad
c. A $10-\mathrm{N}$ forces is applied to push a block across a frictional surface at constant speed for a displacement of 5.0 m to the right.	
d. A 2-kg object is sliding at constant speed across a frictionless surface for a displacement of 5.0 m to the right.	

Free-Body Diagram	Forces Doing Work on the Object Amount of Work Done by Each Force
e. A 2-kg object is pulled upward at constant speed by a $20-\mathrm{N}$ force for a vertical displacement of 5.0 m .	
f. A 2-kg tray of dinner plates is held in the air and carried a distance of 5.0 m to the right.	$\begin{aligned} & \left.\mathrm{W}_{\mathrm{app}}=\ldots \cdot \cos ^{(\ldots}\right)=\square \cdot \cos (\ldots)=\square \\ & \mathrm{W}_{\text {grav }}=\square \\ & \mathrm{W}_{\text {total }}= \end{aligned}$

9. When a force is applied to do work on an object, does the object always accelerate? \qquad
Explain why or why not.
10. Determine the work done in the following situations.
a. Jim Neysweeper is applying a $21.6-\mathrm{N}$ force downward at an angle of 57.2° with the horizontal to displace a broom a distance of 6.28 m .
b. Ben Pumpiniron applies an upward force to lift a 129-kg barbell to a height of 1.98 m at a constant speed.
c. An elevator lifts 12 occupants up 21 floors (76.8 meters) at a constant speed. The average mass of the occupants is 62.8 kg .
