Power

Read from Lesson 1 of the Work, Energy and Power chapter at The Physics Classroom:

http://www.physicsclassroom.com/Class/energy/u5l1e.html

MOP Connection: Work and Energy: sublevel 2

Review:

- 1. A force acting upon an object to cause a displacement is known as _____.

 a. energy
 b. potential
 c. kinetic
 d. work
- Two acceptable units for work are _____. Choose two.
 a. joule b. newton c. watt d. newton•meter

Power as a Rate Quantity:

- Power is defined as the _____ is done.
 a. amount of work which
 - c. angle at which work

- b. direction at which work
- d. the rate at which work
- 4. Two machines (e.g., elevators) might do identical jobs (e.g., lift 10 passengers three floors) and yet the machines might have different power outputs. Explain how this can be so.
- 5. There are a variety of units for power. Which of the following would be *fitting* units of power (though perhaps not standard)? Include all that apply.
 a. Watt
 b. Joule
 c. Joule / second
 d. hp
- Two physics students, Will N. Andable and Ben Pumpiniron, are in the weightlifting room. Will lifts the 100-pound barbell over his head 10 times in one minute; Ben lifts the 100-pound barbell over his head 10 times in 10 seconds. Which student does the most work? ______ Which student delivers the most power? ______ Explain your answers.

During the Powerhouse lab, Jack and Jill ran up the hill. Jack is twice as massive as Jill; yet Jill ascended the same distance in half the time. Who did the most work? _____ Who delivered the most power? _____ Explain your answers.

8. An often-used equation for power is

Power = force x velocity

Express an understanding of the meaning of this equation by using it to explain what type of individuals would be the best choice for lineman on a football team.