Kinematics - Analyzing motion under the condition of constant acceleration

Physics

Kinematic Symbols

\mathbf{x}, \mathbf{y}	Displacement or distance
\mathbf{t}	Time
$\mathbf{v}_{\mathbf{0}}$ or $\mathbf{v}_{\mathbf{i}}$	Initial Velocity
$\mathbf{v}_{\mathbf{t}}$	Final Velocity
\mathbf{a}	Acceleration
$\mathbf{g = 9 . 8 \mathrm { m } / \mathbf { s } / \mathbf { s }}$	Acceleration due to gravity

Kinematic \#1

$$
a=\frac{\Delta v}{\Delta t} \rightarrow \frac{v-v_{o}}{t} \quad v-v_{o}=a t
$$

$$
v=v_{o}+a t
$$

Kinematic \#1

Example: A boat moves slowly out of a marina (so as to not leave a wake) with a speed of $1.50 \mathrm{~m} / \mathrm{s}$. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at $2.40 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.
a) How fast is the boat moving after accelerating for 5 seconds?

What do I know?	What do I want?

$$
\begin{aligned}
& v=v_{o}+a t \\
& v=(1.50)+(2.40)(5) \\
& v=13.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Kinematic \#2

$$
x=v_{o x} t+1 / 2 a t^{2}
$$

b) How far did the boat travel during that time?

$$
\begin{aligned}
& x=v_{o x} t+1 / 2 a t^{2} \\
& x=(1.5)(5)+1 / 2(2.40)\left(5^{2}\right) \\
& x=37.5 \mathrm{~m}
\end{aligned}
$$

Does all this make sense?

Total displacement $=7.50+30=37.5 \mathrm{~m}=$ Total AREA under the line.

Kinematic \#3

$$
v^{2}=v_{o}^{2}+2 a x
$$

Example: You are driving through town at $12 \mathrm{~m} / \mathrm{s}$ when suddenly a ball rolls out in front of your car. You apply the brakes and begin decelerating at $3.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.

How far do you travel before coming to a complete stop?

What do I know?	What do I want?

$$
\begin{aligned}
& v^{2}=v_{o}^{2}+2 a x \\
& 0=12^{2}+2(-3.5) x \\
& -144=-7 x \\
& x=20.57 \mathrm{~m}
\end{aligned}
$$

Common Problems Students Have

I don't know which equation to choose!!!

Equation	Missing Variable
$v=v_{o}+a t$	x
$x=v_{o x} t+1 / 2 a t^{2}$	v
$v^{2}=v_{o}^{2}+2 a x$	t

Kinematics for the VERTICAL Direction

All 3 kinematics can be used to analyze one dimensional motion in either the X direction OR the y direction.

$$
\begin{aligned}
& v=v_{o}+a t \rightarrow v_{y}=v_{o y}+g t \\
& x=v_{o x} t+1 / 2 a t^{2} \rightarrow y=v_{o y} t+1 / 2 g t^{2} \\
& v^{2}=v_{o x}^{2}+2 a x \rightarrow v_{y}^{2}=v_{o y}^{2}+2 g y
\end{aligned}
$$

Examples

A pitcher throws a fastball with a velocity of $43.5 \mathrm{~m} / \mathrm{s}$. It is determined that during the windup and delivery the ball covers a displacement of 2.5 meters. This is from the point behind the body to the point of release. Calculate the acceleration during his throwing motion.

What do I know?	What do I want?

Which variable is NOT given and NOT asked for? TIME

$$
\begin{aligned}
& v^{2}=v_{o}^{2}+2 a x \\
& 43.5^{2}=0^{2}+2 a(2.5) \\
& a=378.45 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Examples

How long does it take a car at rest to cross a 35.0 m intersection after the light turns green, if the acceleration of the car is a constant $2.00 \mathrm{~m} / \mathrm{s} / \mathrm{s}$?

What do I know?	What do I want?
$\mathrm{v}_{\mathrm{o}}=0 \mathrm{~m} / \mathrm{s}$	$\mathrm{t}=?$
$\mathrm{x}=35 \mathrm{~m}$	
$\mathrm{a}=2.00 \mathrm{~m} / \mathrm{s} / \mathrm{s}$	

Which variable is NOT given and NOT asked for?

$$
\begin{aligned}
& x=v_{o x} t+1 / 2 a t^{2} \\
& 35=(0)+1 / 2(2) t^{2} \\
& t=5.92 \mathrm{~s}
\end{aligned}
$$

Examples

A car accelerates from $12.5 \mathrm{~m} / \mathrm{s}$ to $25 \mathrm{~m} / \mathrm{s}$ in 6.0 seconds. What was the acceleration?

What do I know?	What do I want?

Which variable is NOT given and NOT asked for?

$$
\begin{aligned}
& v=v_{o}+a t \\
& 25=12.5+a(6) \\
& a=2.08 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Examples

A stone is dropped from the top of a cliff. It is observed to hit the ground 5.78 s later. How high is the cliff?

What do I know?	What do I want?

Which variable is NOT given and NOT asked for?

$$
\begin{aligned}
& \quad y=v_{o y} t+1 / 2 g t^{2} \\
& y=(0)(5.78)-4.9(5.78)^{2} \\
& y=-163.7 \mathrm{~m} \\
& h=163.7 \mathrm{~m}
\end{aligned}
$$

