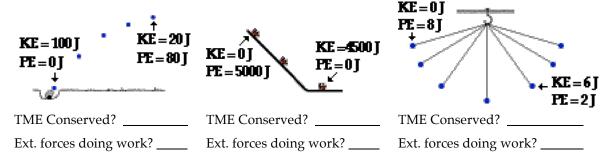
Work-Energy Relationships

Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/Class/energy/u5l2a.html

MOP Connection: Work and Energy: sublevel 5

Important Background: As an object moves, either its total mechanical energy is conserved or mechanical energy is transferred to non-mechanical forms (such as thermal energy, light energy, electrical energy, etc.). Whether there is an energy transfer or an energy conservation depends on whether or not external (a.k.a. non-conservative) forces are doing work. If external forces (or non-conservative forces) are doing work, then the total mechanical energy of the object is not conserved - energy is transferred between mechanical and non-mechanical forms. On the other hand, if external forces do not do work, the total mechanical energy of the object is conserved.


1. Categorize the following force types as being either internal or external forces: F_{grav} ; F_{norm} ; F_{frict} ; F_{air} ; F_{app} ; F_{tens} ; and F_{spring} .

Internal Forces	External Forces		

2. Identify the following as being either always true (AT), never true (NT) or might be true (MBT).

AT, NT, MBT?	Statement:		
	a. If gravity does work upon an object, then its total mechanical energy (TME) is conserved.		
	b. If gravity is the only force doing work upon an object, then its total mechanical energy (TME) is conserved.		
	c. If a normal force acts upon an object, then its TME will change.		
	d. If sliding friction does work upon an object, then its TME will decrease.		
	e. If only external forces are doing work upon an object, then its TME will be conserved.		
	f. If both internal and external forces are doing net work upon an object, then more information is needed to tell if its TME will be conserved.		
	g. If a quantity such as the total mechanical energy is conserved, then that means that it does not change over the course of a motion.		

3. Consider the three situations below. Identify whether or not the total mechanical energy (TME) is being conserved. Then indicate if external forces (non-conservative) are doing work.

Work, Energy, and Power

4. For each statement, identify which forces (F_{grav} ; F_{norm} ; F_{frict} ; F_{air} ; F_{app} ; F_{tens} ; and F_{spring}) are doing work. Then state whether the total mechanical energy will be conserved.

a. A bungee jumper rapidly decelerates as he reaches the end of his spring-like bungee chord. Ignore the effect of air resistance.	b. A girl releases a softball from rest from a height of 2 meters above the ground; the ball free-falls to the ground.
Forces doing work?	Forces doing work?
TME Conserved? Yes No	TME Conserved? Yes No
c. A weightlifter briskly raises a 200-pound barbell above his head.	d. A swimmer pushes off the blocks to accelerate forward at the beginning of a race.
Forces doing work?	Forces doing work?
TME Conserved? Yes No	TME Conserved? Yes No

For questions #5-#13, a physical situation is described. For each situation determine whether the total mechanical energy (TME) of the object (in **bold-face text**) is conserved, increases, or decreases.

 5.	A force is applied to a root a. TME conserved	b. TME increases	cross a level counter-top c. TME decreases
 6.	A force is applied to a cart a. TME conserved	to raise it up an inclined pl b. TME increases	ane at constant speed. c. TME decreases
 7.	A marble starts from rest a a. TME conserved	and rolls down an inclined j b. TME increases	plane. Ignore friction. c. TME decreases
 8.	A physics student runs up a. TME conserved	a flight of stairs at constan b. TME increases	t speed. c. TME decreases
 9.	A baseball makes its flight a. TME conserved	t through the air. (Neglect lb. TME increases	F _{air} .) c. TME decreases
 10.	A coffee filter is released fa. TME conserved	from rest and falls with a te b. TME increases	rminal velocity. c. TME decreases
 11.	A car skids to a stop while a. TME conserved	traveling down a steep hill b. TME increases	c. TME decreases
 12.	A pendulum bob is tied to a. TME conserved	a string and swings back a b. TME increases	and forth. (Neglect F _{air} .) c. TME decreases
 13.	A marble hits a note card a a. TME conserved	and slides to a stop. b. TME increases	c. TME decreases