

: Projectile motion can : be described by the : horizontal and vertical components of motion.
A. Vector Quantity- describes both direction and magnitude (size)

1. Includes quantities like velocity (speed and direction), and acceleration
2. speed is magnitude of velocity vector

Let's say you are taking a trip to Hawaii. The distance to Hawaii is 4100 km and you travel at $900 \mathrm{~km} / \mathrm{hr}$.

How long should it take you to reach Hawaii?

$$
\text { Let's do the math. } \frac{(4100 \mathrm{~km})}{(900 \mathrm{~km} / \mathrm{h})}=\frac{(4100 \mathrm{~h})}{(900)}=4.56 \text { hours }
$$

It should take you the same amount of time to return..... Right? Does it? Why not?

Remember, we can use vectors to describe things such as velocity. Vectors tell us direction and magnitude Let's look at the velocity vectors that might describe the airplane's velocity and the wind's velocity
Airplane vector to Hawaii =
Wind vector = subtract vectors =

What is the difference in speed?
What about the direction?
Airplane vector from Hawaii =
Wind vector $=\longrightarrow$
Add together $=$

B. Scalar Quantity- specified by magnitude only

1. can be added, subtracted, multiplied, and divided like ordinary numbers
2. includes: mass, volume, time, etc.

II. Velocity Vectors (5.2)
A. An arrow is used to represent the magnitude and direction of a vector quantity.

3. Length of arrow (drawn to scale) indicates magnitude
4. Direction of arrow indicates direction of vector quantity

Arrow-tipped line segment

Length represents magnitude

Arrow points in specified direction of vector

Vectors are equal if: magnitude and directions are the same

Vectors are not equal if: have different magnitude or direction

B. Parallel vectors- simple to add or subtract

 add
subtract

8
C. Combining vectors that are NOT parallel

1. Result of adding two vectors called the resultant
2. Resultant of two perpendicular vectors is the diagonal of the rectangle with the two vectors as sides

3. Use simple three step technique to find resultant of a pair of vectors that are at right angles to each other.
a. First- draw two vectors with their tails touching.

4. Use simple three step technique to find resultant of a pair of vectors that are at right angles to each other.
b. Second-draw a parallel projection of each vector with dashed lines to form a rectangle

5. Use simple three step technique to find resultant of a pair of vectors that are at right angles to each other.
c. Third-draw the diagonal from the point where the two tails are touching

6. Adding vectors not at right angles
a. Construct parallelogram
b. Construct with two vectors as sides
c. Resultant is the diagonal

7. Adding vectors when parallelogram is a square (two vectors of equal length and at right angles to each other)
a. Construct a square
b. The length of diagonal is $\sqrt{2}$ or 1.414 times either of the sides
c. Resultant is $\sqrt{2}$ times either of the vectors

5.2 Velocity Vectors

think!

Suppose that an airplane normally flying at $80 \mathrm{~km} / \mathrm{h}$ encounters wind at a right angle to its forward motion-a crosswind. Will the airplane fly faster or slower than $80 \mathrm{~km} / \mathrm{h}$?

5.2 Velocity Vectors

think!

Suppose that an airplane normally flying at $80 \mathrm{~km} / \mathrm{h}$ encounters wind at a right angle to its forward motion-a crosswind. Will the airplane fly faster or slower than $80 \mathrm{~km} / \mathrm{h}$?

Answer: A crosswind would increase the speed of the airplane and blow it off course by a predictable amount.
III. Components of Vectors (5.3)
A. Technique to determine the vectors that made up a resultant vector (working backwards)

1. Any vector can be "resolved" into two component vectors at right angles to each other
a. These two vectors are called components
b. Process of determining components is called resolution

Components of Vectors

- Need a coordinate system
- Choose origin and direction axes point
- When describing motion on earth, use North, South, East, and West

- Direction of vector specified relative to coordinates
- Defined by angle (θ) makes with x-axis (measured counterclockwise)

Vector Resolution

- Vector (A) broken up into (or resolved into) two component vectors
-Ax-parallel to x-axis
- Ay-parallel to y-axis
- Original vector sum of two component vectors

$$
A=A_{x}+A_{y}
$$

c. can resolve into vertical and horizontal components

IV. Projectile Motion (5.4)
A. projectile-any object that moves through the air or through space, acted on only by gravity (and air resistance, if any)

1. follow curved path near Earth's surface

2. Can look at vertical and horizontal components separately.
a. Horizontal component for projectile same as ball rolling freely along a level surface (when friction is negligible). Has constant horizontal velocity
1). Covers equal distance in equal time interval
2). With no horizontal force acting on ball there is no horizontal acceleration (same for a projectile)
b. Vertical component of a projectile's velocity is like motion of free falling object.
1). Only force in vertical direction is gravity
2). Vertical component changes with time
c. horizontal and vertical components are completely independent of each other. 1). Combine to produce variety of curved paths that projectiles follow.

3. Path of projectile accelerating in the vertical with constant horizontal velocity forms a parabola
4. When air resistances small enough to neglect (slow moving or heavy projectiles) the curved path are parabolic

V. Projectiles Launched Horizontally (5.5)
A. Horizontal motion is constant
1.Horizontal component constant (moves same horizontal distance in equal time intervals)

5. No horizontal component of force acting on it
B. Gravity only acts downward
6. object accelerates downward
7. Downward motion of horizontally launched projectile is the same as that for free fall

A strobe-light photo of two balls released simultaneously-one ball drops freely while the other one is projected horizontally.

5.5 Projectiles Launched Horizontally

think!

At the instant a horizontally pointed cannon is fired, a cannonball held at the cannon's side is released and drops to the ground. Which cannonball strikes the ground first, the one fired from the cannon or the one dropped?

5.5 Projectiles Launched Horizontally

think!

At the instant a horizontally pointed cannon is fired, a cannonball held at the cannon's side is released and drops to the ground. Which cannonball strikes the ground first, the one fired from the cannon or the one dropped?

Answer: Both cannonballs fall the same vertical distance with the same acceleration g and therefore strike the ground at the same time.
VI. Projectiles Launched at an Angle (5.6)
A. Vertical distance independent of horizontal distance

1. If no gravity projectile travels in straight line
2. Gravity causes projectile to fall below this line the same distance it would have fallen if it were dropped from rest.

5.6 Projectiles Launched at an Angle

The velocity of a projectile is shown at various points along its path. Notice that the vertical component changes while the horizontal component does not. Air resistance is neglected.

5.6 Projectiles Launched at an Angle

The velocity of a projectile is shown at various points along its path. Notice that the vertical component changes while the horizontal component does not. Air resistance is neglected.

5.6 Projectiles Launched at an Angle

The velocity of a projectile is shown at various points along its path. Notice that the vertical component changes while the horizontal component does not. Air resistance is neglected.

5.6 Projectiles Launched at an Angle

The velocity of a projectile is shown at various points along its path. Notice that the vertical component changes while the horizontal component does not. Air resistance is neglected.

5.6 Projectiles Launched at an Angle

The velocity of a projectile is shown at various points along its path. Notice that the vertical component changes while the horizontal component does not. Air resistance is neglected.

3. Distance below line calculated with equation

$$
d=\frac{1}{2} g t^{2}
$$

B. Height

1. Vertical distance a projectile falls below an imaginary straight line path increases continually with time
2. Equal to $5 \mathbf{t}^{2}$ meters $\quad d=\frac{1}{2} g t^{2}$

C. Range
3. Path of projectile forms parabola (neglecting air resistance 2. Horizontal range changes with angle of launch
a. 45 degrees gives maximum range b. Some angles yield same range (i.e. 30 and 60 degrees)

Notice the positions with the same range using different launch angles. How are these values related?

5.6 Projectiles Launched at an Angle

think!

A projectile is launched at an angle into the air. Neglecting air resistance, what is its vertical acceleration? Its horizontal acceleration?

5.6 Projectiles Launched at an Angle

think!

A projectile is launched at an angle into the air. Neglecting air resistance, what is its vertical acceleration? Its horizontal acceleration?

Answer: Its vertical acceleration is g because the force of gravity is downward. Its horizontal acceleration is zero because no horizontal force acts on it.

5.6 Projectiles Launched at an Angle think!

At what point in its path does a projectile have minimum speed?

5.6 Projectiles Launched at an Angle

think!

At what point in its path does a projectile have minimum speed?

Answer: The minimum speed of a projectile occurs at the top of its path. If it is launched vertically, its speed at the top is zero. If it is projected at an angle, the vertical component of velocity is still zero at the top, leaving only the horizontal component.

D. Speed- If we take into account air resistance, range is diminished and path not true parabola.

14.1 Earth Satellites

An Earth satellite is a projectile moving fast enough to fall continually around Earth rather than into it. On an imaginary tiny planet, you would not have to throw the stone very fast to make its curved path match the surface curvature.
Because of the planet's small size and low mass, if you threw the stone just right, it would follow a circular orbit.

14.1 Earth Satellites

In the curvature of Earth, the surface drops a vertical distance of nearly 5 meters for every 8000 meters tangent to its surface.

14.1 Earth Satellites

The orbital speed for close orbit about Earth is $\mathbf{8 k m} / \mathbf{s}$.

- That is an impressive $29,000 \mathrm{~km} / \mathrm{h}$ (or $\mathbf{1 8 , 0 0 0}$ mi / h).
- At that speed, atmospheric friction would burn an object to a crisp.
- A satellite must stay 150 kilometers or more above Earth's surface-to keep from burning due to the friction.

Brief History of Projectiles

Trebuchets were formidably powerful weapons, with a range of up to about 300 yards. The range of most trebuchets was in fact shorter than that of an English longbow in skilled hands, making it somewhat dangerous to be a trebuchet operator during a siege.

The payload of a trebuchet was usually a large rounded stone, although other projectiles were occasionally used: dead animals, the severed heads of captured enemies, barrels of burning tar or oil, or even unsuccessful negotiators catapulted alive.

History of Projectiles

Newton's physical principles applied to projectile motionnotice the parabolic path of projectile

Aristotle's physical principles applied to projectile motion

OHOHO: Wie dieses Weibsbild, scheint fïrwahr Choiner noined manch Ziel oft unberechen,bar.
Wenig gebrauchte
Wenig gebrauchte
Visiere für'ein Ziel
Visiere für'ein Ziel
500 weit -2 m hach
500 weit -2 m hach
in 6 brouthooren Orisien
in 6 brouthooren Orisien
vorrätig.
vorrätig.
Der Richtschütze Holzauge schüttelfe den Kopl, denn bei Visier 700 hötte der SchuB doch drübergehen müssen. Er ging iefal aufs Ganze, nahm Visier 1000 und traf den Kopf.

Visier 25 m zu kurz, kein Treffer! Visier 500 m zu weit, Treffer ! ! ! ! !
Da staunt der Laie, der Fachmann aber IAchelt!

Wh:owenl: Die richt'ge Schatzung bringt gar of nicht auch den Treffer, den man hoff.

The maximum rang is 38,059 meters (24 miles) when fired with the normal propelling charge of 300 kg , with a muzzle velocity of 816 meter/second.

Gerry Bull never gave up his dream of gun-launching a satellite. In the mid-1980's he was contracted by the nation of Iraq to construct a satellite launching gun system. The Babylon Gun - a massive 1000 mm bore, 156 meter long, satellite launching gun - was seen as a threat by Iraq's neighbors (despite the fact that its sheer size would have made it ineffective as a weapon and easily disabled).

Assessment Questions

1. Which of these expresses a vector quantity?
a. 10 kg
b. 10 kg to the north
c. $10 \mathrm{~m} / \mathrm{s}$
d. $\quad 10 \mathrm{~m} / \mathrm{s}$ to the north

Assessment Questions

1. Which of these expresses a vector quantity?
a. 10 kg
b. 10 kg to the north
c. $10 \mathrm{~m} / \mathrm{s}$
d. $\quad 10 \mathrm{~m} / \mathrm{s}$ to the north

Answer: D

Assessment Questions

2. An ultra-light aircraft traveling north at $40 \mathrm{~km} / \mathrm{h}$ in a $30-\mathrm{km} / \mathrm{h}$ crosswind (at right angles) has a groundspeed of
a. $30 \mathrm{~km} / \mathrm{h}$.
b. $40 \mathrm{~km} / \mathrm{h}$.
c. $50 \mathrm{~km} / \mathrm{h}$.
d. $60 \mathrm{~km} / \mathrm{h}$.

Assessment Questions

2. An ultra-light aircraft traveling north at $40 \mathrm{~km} / \mathrm{h}$ in a $30-\mathrm{km} / \mathrm{h}$ crosswind (at right angles) has a groundspeed of
a. $30 \mathrm{~km} / \mathrm{h}$.
b. $40 \mathrm{~km} / \mathrm{h}$.
c. $50 \mathrm{~km} / \mathrm{h}$.
d. $60 \mathrm{~km} / \mathrm{h}$.

Answer: C

Assessment Questions

3. A ball launched into the air at 45° to the horizontal initially has
a. equal horizontal and vertical components.
b. components that do not change in flight.
c. components that affect each other throughout flight.
d. a greater component of velocity than the vertical component.

Assessment Questions

3. A ball launched into the air at 45° to the horizontal initially has
a. equal horizontal and vertical components.
b. components that do not change in flight.
c. components that affect each other throughout flight.
d. a greater component of velocity than the vertical component.

Answer: A

Assessment Questions

4. When no air resistance acts on a fast-moving baseball, its acceleration is
a. downward, g.
b. due to a combination of constant horizontal motion and accelerated downward motion.
c. opposite to the force of gravity.
d. at right angles.

Assessment Questions

4. When no air resistance acts on a fast-moving baseball, its acceleration is
a. downward, g.
b. due to a combination of constant horizontal motion and accelerated downward motion.
c. opposite to the force of gravity.
d. at right angles.

Answer: A

Assessment Questions

5. When no air resistance acts on a projectile, its horizontal acceleration is
a. g.
b. at right angles to g.
c. upward, g.
d. zero.

Assessment Questions

5. When no air resistance acts on a projectile, its horizontal acceleration is
a. g.
b. at right angles to g.
c. upward, g.
d. zero.

Answer: D

Assessment Questions

6. Without air resistance, the time for a vertically tossed ball to return to where it was thrown is
a. $10 \mathrm{~m} / \mathrm{s}$ for every second in the air.
b. the same as the time going upward.
c. less than the time going upward.
d. more than the time going upward.

Assessment Questions

6. Without air resistance, the time for a vertically tossed ball to return to where it was thrown is
a. $10 \mathrm{~m} / \mathrm{s}$ for every second in the air.
b. the same as the time going upward.
c. less than the time going upward.
d. more than the time going upward.

Answer: B

