Name \qquad Date \qquad Period \qquad

Chapter 4 Concept Review
 P H Y S IC S

Directions: Answer the following questions using your notes and textbook

1. \qquad (4th century BC- first to suggest force causes motion.
2. Before 16th century though Earth must be in its natural \qquad place (a force large enough to move it was unthinkable)
3. Nicolaus \qquad (1473-1543)- said Earth and other planets move around sun.
4. The foremost scientist of the late-Renaissance Italy was \qquad .
5. \qquad - is any push or pull.
6. Friction- name given to the \qquad that acts between materials that touch as they move past each other.
7. Galileo argued that only when friction is present- as it usually is- a force needed to keep an object \qquad .
8. He stated- every material object resists change to its state of motion-called \qquad .
9. Newton's First Law of Motion- usually referred to as the law of \qquad .
10. Every object continues in a state of \qquad , or of \qquad in a straight line at constant speed, unless it is compelled to change that state by \qquad exerted upon it.
11. Simply put- things tend to \qquad doing what they're already doing.
12. \qquad -a measure of space (units like cubic meters, liters, etc.)
13. \qquad - measurement of amount of material in an object and depends on number of and kind of atoms that compose it.
14. Weight- a measure of the \qquad force acting on the object.
15. Weight $=$ \qquad X
16. Force of gravity $\left(F_{g}\right)=$ \qquad x \qquad
17. \qquad - combination of all forces acting on an object's state of motion
18. \qquad - when forces add up to a net force of zero.
19. Stationary book resting on table-Force of \qquad is "pushing down" on book but balanced by equal force in opposite direction (force of table pushing up) this "pushing up" force is called the \qquad force or \qquad force.
20.
21.

22. The net force in the diagram $=$ \qquad
23. Vertical load- upward force equals force of \qquad (addition)

24. Non-vertical load- as \qquad increases, the scale reading would increase to maintain upward pull.

25. Form \qquad to calculate the upward force (use \qquad as resultant).

