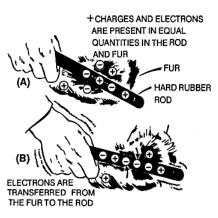
IMPORTANT TERMS:

- Charge
- Conductor
- Conservation of charge
- Coulomb
- · Coulomb's Law
- **Electrical force**
- **Electrically polarized**
- Electrostatics
- Grounding
- Induced
- Induction
- Insulator
- Semiconductor
- superconductor

EQUATIONS:

$$F = k \frac{q_1 q_2}{d^2}$$

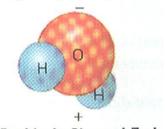
UNIT V: Electricity and Magnetism Chapters 32-37


I. Electrical Forces and Charges			
	(Involves electric charges, d their behavior in materials)		
B. Electrical forces			
1. arise from	in atoms		
2. Occur as	of acting on you at		
all times			
a. Attractin	g and forces		
b. This force	e attributed to property called		
1)	- <u>negative</u> charge		
2)	- <u>positive</u> charge		
3)	- <u>neutral</u> charge		
3. Much	than gravitational force		
C. Atoms			
IT'S LIKE THIS			
electron (-)	nucleus sur- rounded by negatively charged		
proton (+)	2. All electrons are identical (same mass and quantity of negative charge)		
	3. Nucleus composed ofand		
	a. all <u>protons</u> are identical		
b. all <u>neutrons</u> identical			
c. <u>Proton</u> has mass 2000 times than <u>electron</u>			
d. positive charge of proton in magnitude to negative charge of electron.			
e. neutron has mass slightly greater than proton			

and has _____

4. Atoms usually have as many electrons as protons, so atom has anet charge
5. Fundamental rule at the base of all electrical phenomena is:
Like charges; opposite charges
Likes Repel
Likes Repel
II. Conservation of Charge (32.2)
A. Electrons and protons have electric charge
Neutral atom- <u>electrons</u> equal (no net charge)
If electron removed atom no longer neutral- would have one extra proton and be positively charged
3 a charged atom
a ion- has net positive charge (it has lost one or more electrons)
b ion- has net negative charge (it has gained one or more extra electrons)
B. Electrical charge
1. Matter is made up of
2 in numbers cause object to be electrically charged
C. Electrons
Inner electrons bound to oppositely charged nucleus
2. Outermost electrons bound and can be easily dislodged.
Different materials require varying amounts of energy to tear an electron away from an atom
 An object with unequal numbers of electrons and protons is electrically charged
D. Conservation of charge

	1. Electrons are neither	nor
	a. They are simply material to another	from one
	2 is conserved (corne with conservation of energy a	
III. Coulomb	's Law (32.3)	
A. Ex	plains the betv	veen any two objects
	1. Similar to Newton's Law of G	ravitation
	2. Obeys inverserel	ationship with distance
	3. Discovered by French physic (1736-1806)	ist Charles Coulomb
Coulomb's	Law- states that for charged objects that are small compare to the distances between them between the charges as the product of the charges and as the square distance.	ed , the varies directly s e of the
I I	Equation	i i
$q_1 = 0$	istance between charged partic	ele
$q_1 = 0$ $q_2 = 0$		ele
$q_1 = 0$ $q_2 = 0$	quantity of charge of one partic quantity of charge of other part	icle
$q_1 = 0$ $q_2 = 0$	quantity of charge of one partic quantity of charge of other part roportionality constant	icle icle (C) ge of 6.24 billion billion
$q_1 = 0$ $q_2 = 0$	quantity of charge of one partic quantity of charge of other part roportionality constant 1. SI unit of charge is the a. One coulomb = charge	icle icle(C) ge of 6.24 billion billion electrons) passes through a 1wat
$q_1 = 0$ $q_2 = 0$	quantity of charge of one partic quantity of charge of other part roportionality constant 1. SI unit of charge is the a. One coulomb = charge electrons (b. Amount of charge that	cle icle(C) ge of 6.24 billion billion electrons) t passes through a 1wat ond.


	a. Unlike (G) in gravitation equation, (k) is a verynumber.
	b. Biggest difference between gravitation and electrical forces is that while gravity only, electrical forces may either or
	C. Electrical forces usually out.
	Weak gravitational force (attractive only) is predominant force between astronomical bodies
	2 explains the bonding of atoms to form molecules
IV. Co	inductors and Insulators (32.4)
	Amaterials that have more loosely bound outer electrons that can roam in the material
	1 are good conductors of electricity
	2. Also good conductors of
	B Materials whose electrons are not free to wander
	1. Also poor conductors of
	2. Rubber and glass good
	C. Semi-conductors - materials that can be made to behave as conductor or insulator (thin layers of semi- conducting materials viched together make up)
	materials that acquire infinit conductivity (At temperature near absolute zero, certain metals become superconductors)

V. Charging by Friction and Contact (32.5)				
A. Charging by can transfer electrons when one material rubs against another				
NET CHARGE IS ZERO NET CHARGE IS + NET CHARGE IS - O C D C D C D C C D C C C C				
B. Charging by can transfer charge by touching charged object to neutral object				
VI. Charging by Induction (32.6)				
A are caused to gather or disperse by the presence of a nearby charge (even without physical contact)				
Charging by induction occurs during				
Demonstrated by Benjamin kite experiment				
Most lightning is an electrical discharge between oppositely charged parts of a cloud.				
B. An object can be charged when touched when the charges are separated by induction.				
F+ F				
when we allow charges to move off conductor by touching it, it is common to say we are grounding it.				

	 allow path to practically infinite reservoir for electric charge (the ground) 				
2	2. Important when we talk about electrical currents				
	large buildup of	designed by Franklin to charge that would otherwicharge between the cloud	wise lead		
VII. Charge Polarization (32.7)					
A. When charged rod brought near an insulator, there are no free electrons to migrate throughout the insulating material. Instead there is a of the positions of charges within the atoms and molecules.					
1. —		to be slightly more			
2. The atom or molecule is said to be electrically					

Negatively Charged End

Positively Charged End