Trigonometric Ratios

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

Vector Diagrams

Resultant Vectors

$$
\begin{gathered}
v^{2}=v_{x}^{2}+v_{y}^{2} \\
\theta=\tan ^{-1}\left(\frac{\text { opposite }}{\text { adjacent }}\right)
\end{gathered}
$$

Vector Components

$$
\begin{aligned}
& v_{x}=v \cdot \cos \theta \\
& v_{y}=v \cdot \sin \theta
\end{aligned}
$$

Horizontal Projectile

Horizontal
v_{x} is constant
$d_{x}=v_{x} \cdot t$
Vertical
$v_{y}=a \cdot t$
$d_{y}=\frac{1}{2} \cdot a \cdot t^{2}$
$t=\sqrt{\frac{2 d}{a}}$

Cannonball Projectile
Horizontal Vertical
$v_{x}=v \cdot \cos \theta$
$v_{y}=v \cdot \sin \theta$
$d_{x}=v_{x} \cdot t$
$d_{y}=v_{y i} \cdot t+\frac{1}{2} \cdot a \cdot t^{2}$
v_{x} is constant
$v_{y}=v_{y i}+a \cdot t$

Name

Time
Distance (horizontal)
Distance (vertical)
Velocity (horizontal)
Velocity (vertical)
Velocity (resultant)
Acceleration (gravity)
Launch Angle

Symbol

t
d_{x}
d_{y}
v_{x}
v_{y}
v
g
θ

Unit

second
meter
meter
m / s
m / s
m / s

$$
\mathrm{m} / \mathrm{s}^{2}
$$

degrees

Notes

also called range also called height
$-9.8 \mathrm{~m} / \mathrm{s}^{2}$

