FRICTION

- When surfaces slide or tend to slide over one another, a force of friction acts.
- No friction exists on a crate that sits at rest on a flat floor.
- The direction of the friction force is always in a direction opposing motion.
- When you apply a force to an object, a force of friction usually reduces the net force and reduces the resulting acceleration.

An object sliding down an incline
experiences friction directed up the ${ }_{\mathrm{f}}^{\mathrm{incl}} \mathrm{line}$.

COEFFICIENT OF FRICTION

- μ represents the coefficient of friction
- It can not be larger than I
- Factors that affect how much friction are
- Type of surface the object is on
- Normal force
- The equation for friction is
- $F_{f}=(\mu)\left(F_{N}\right)$

AN EXAMPLE-FRICTION I

- Example:A jumbo jet cruises at a constant velocity of 1000 km / h when the thrusting force of its engines is a constant 100,000 N.What is the acceleration of the jet? What is the force of air resistance.
- Answer:
- Constant velocity acceleration is zero \longrightarrow net force is zera the air resistance is balanced out by the thrusting force.
- So, force of air resistance on the jet $=100,000 \mathrm{~N}$.

AN EXAMPLE-FRICTION 2

- Calculate the force of friction acting on a 2 kg block sliding across a surface that has a coefficient of friction of 0.10
- Answer
- $\mathrm{Fg}=\mathrm{mg}=\mathrm{FN} \quad$ and $\mathrm{Ff}=(\mu) \mathrm{FN}$
- $\mathrm{Fg}=20 \mathrm{~N}=\mathrm{FN}$
- $\mathrm{Ff}=(0.10)(20 \mathrm{~N})=2 \mathrm{~N}$
- Force of friction equals 2 N in the opposite direction of the motion of the object.

FREE FALL

 objects of various masses fall with equal accelerations.

- Newton's second law provides the explanation:
- A falling object accelerates toward the Earth because of the gravitational force of attraction (gravity) between the object and the Earth.
- The acceleration due to gravity is a constant g, for the same locality.

Question: In a vacuum, a coin and a feather fall equally, side by side, would it be correct to say that equal force of gravity act on both the coin and the feather when in a vacuum?

NON-FREE FALL

- In the presence of air resistance, the net force on a falling object is less than the gravity-it is the gravity minus air drag, the force arising from air resistance.
- Air drag is opposing the direction of motion and decreases the net force. Thus, $a<g$.

