Chapter 36 & 37: Magnetism and Electromaagnetic Induction

What you will learn:

- You will relate magnetism to electric charge and electricity
- You will describe how electromagnetism is harnessed to produce mechanical work

Why it's important:

- Using electromagnetism in electric motors, you can convert electrical energy to mechanical energy
- Every day, you apply mechanical energy produced from electrical energy

State Standards Addressed

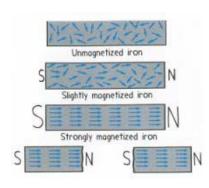
Electric and Magnetic Phenomena: Electric and magnetic phenomena are related and have many practical applications. As a basis for understanding this concept:

- *Students know* magnetic materials and electric currents (moving electric charges) are sources of magnetic fields and are subject to forces arising from the magnetic fields of other sources.
- *Students know* how to determine the direction of a magnetic field produced by a current flowing in a straight wire or in a coil.
- *Students know* changing magnetic fields produce electric fields, thereby inducing currents in nearby conductors.

I. Historical Background

A. The term ______ comes from region of Magnesia, a province in Greece, where certain stones (______) had the unusual property of attracting pieces of iron

B. The _____ were first to fashion magnets into **compasses** in the 12th century


C._____ explores brought back knowledge in 1500's

D. In 16th century, _____ (Queen Elizabeth's physician) mad **artificial** _____ by rubbing pieces of iron against lodestone and suggested that a compass always points north and south because the _____ **has magnetic properties**.

E. In 1750, ______ in England found that magnetic poles obey the ______, and his results were confirmed by Charles _____.

F. Hans Christian ______ discovered that an electric current affects a magnetic compass. He saw that **magnetism was**

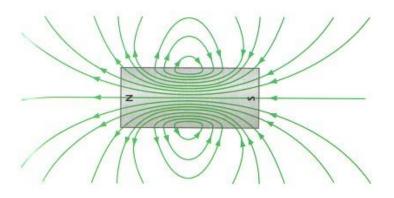
	G. Shortly thereafter, the French phy Ampere proposed that magnetic phenomena .	5
	II. Magnetic Properties	
	A. Magnetic Poles	
	1. A magnet is (it	has two ends)
	a. North-seeking pole- points	
	b. South-seeking pole	϶- points
	c. Poles are located a	at the of the magnets
	2. Like poles and u forces between electric charg	
	B. Magnetic Forces 1. Are to electric forces a. Can both attract and repel	
	a. Can both attract ar	nd repel
	b. of mag depends on the distar magnets	
	2. Whereas electric charges regions calledforces	
	C. Permanent magnets	
N	 Caused by motion of election (both and 	
N	a. Electrons spinning i up a tiny magnet .	n direction make
s	b. A pair of electrons s directions other and magnetic fi	work against each
	 In materials such as iron, e electrons whose spin magne 	
	a. Each iron atom is tir	ny magnet
ELS.		from groups of atoms can are called
		is not in a magnetic field, point in same direction

d. When iron placed in **magnetic field**, **domains** tend to ______ with the **external field** producing a ______ **magnet**. After removing from field domains return to random arrangement.

e. In _____magnets, the iron has been alloyed with other substances (aluminum, cobalt, nickel) that keep domains aligned after external magnetic field is removed

D. Magnetic Fields

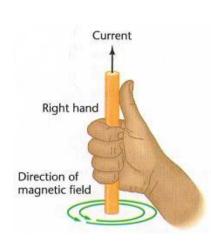
1. Magnetic forces can be described by existence of *magnetic fields* around the magnets


a. These lines are _____

b. Help **visualize** the field and provide

1). magnetic flux-

2). The____ per unit area is proportional to the_____ of the magnetic field


2. Field lines come out N-pole of magnet and enter magnet at its S-pole.

3. Field lines **continue through** the **inside** of the magnet.

- 4. Field lines always form _____
- 5. Magnetic fields exert forces on other magnets

a. ____pole of one magnet pushes N-pole of another magnet.

b. ____-pole of one magnet attracts S-pole of another magnet.

III. Electromagnetism

A. In 1820, Hans Christian Oersted discovered that

B. Magnetic field near a current-carrying wire

1. Force is ______ to direction of current in wire

2. Magnetic field lines form _____circles around the wire (closed loops)

a. Strength of magnetic field is **proportional** to the _____

b. Strength of field varies **inversely** with the ______ from the wire

3. First right-hand rule- allows you to find the direction of the field around a wire

a. Thumb points in direction of conventional current (+ flow)

b. Fingers of hand **circle** the wire and point in **direction of magnetic field**

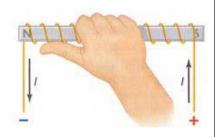
C. Magnetic field near a coil

1. An electric current in a single circular loop of wire forms a magnetic field all around the loop

2. When wire looped several times to form a coil and current is allowed to flow- **field** around all the loops is always in _____

a. _____-long coil of wire with many loops

b. Field of each loop adds to fields of other loops


3. Electric current in a coil of wire has a **field** like that of a ______ (has N and S poles)

a. called an _____

b. Strength of **field** is **proportional** to **current** in coil

c. Can increase strength by placing an iron rod inside the coil. The field inside the coil magnetizes the core. These add together

4. **Direction** of **field** produced by electromagnet can be found using the **second right-hand rule**

a. Imagine holding insulated coil with you right hand

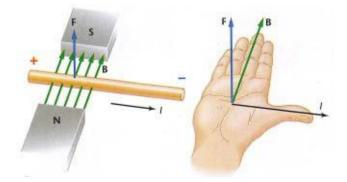
b. Curl fingers around loops in the **direction** of the **conventional current** (+ flow)

c. Thumb points toward the N-pole of the electromagnet

IV. Forces Caused by Magnetic Fields

A. Forces on currents in magnetic fields

1. Michael _____ (mid 1800's) discovered that the **force** on a wire is at **right angles** to the **direction of the magnetic field.**

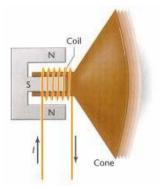

2. Force is also at ______ to the direction of the current

B. Use third right-hand rule to determine direction of force

1. Point ______ of right hand in direction of magnetic field.

2. Point _____in direction of conventional (+) current

3. _____ of hand points in direction of force acting on the wire


C. Magnitude of force (F) on wire is proportional to 3 factors

- 1. The strength of field (B)
- 2. The current (I) in the wire

3. The length (L) of the wire that lies in the magnetic field

Equation:

Measured in teslas (T) $1 T = 1 N/A \cdot m$

V. Applications of Magnetic Force

A. Loudspeakers

1. Changes ______ energy into ______ energy

2. Uses a coil of fine wire mounted on a paper cone and placed in a magnetic field

3. Amplifier driving loudspeaker sends _____through the _____

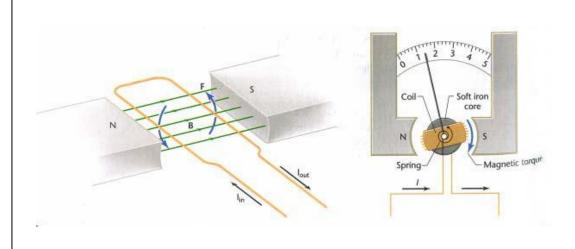
4. The **current** _____ **direction** between 20 and 20,000 times each second, depending on the pitch of the tone it represents.

5. A _____, exerted on the coil because it is in a magnetic field, **pushes** the coil either **into or out of the field**, depending on the **direction of the current**

6. The _____ of the coil causes the cone to vibrate, creating sound waves in the air

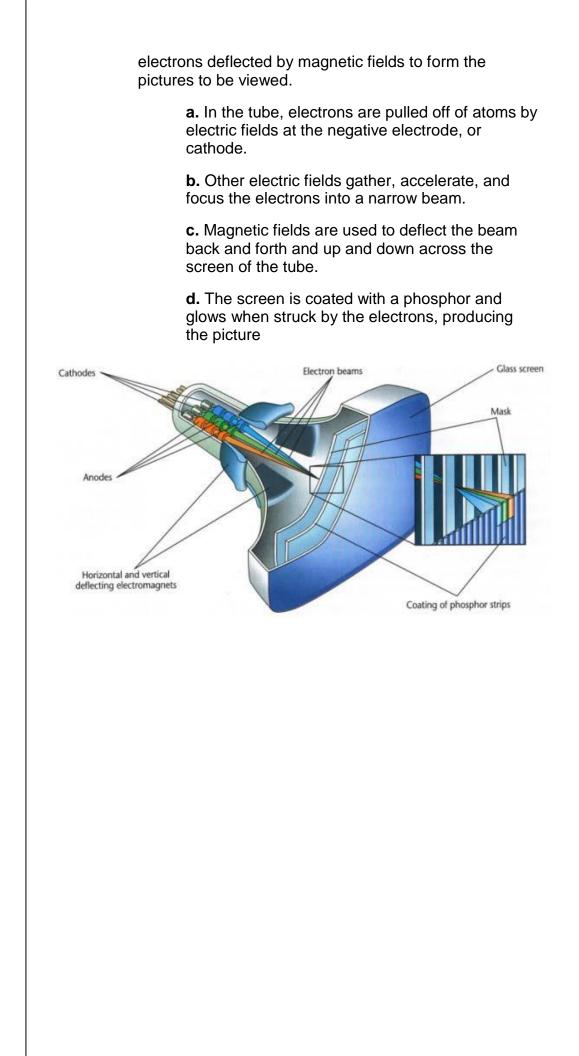
B. Galvanometer

1. Device used to _____


2. Used in voltmeters and ammeters.

3. A small loop of current carrying wire is placed in a strong magnetic field

4. One side of loop forced down and the other side is forced up (third right-hand rule)


5. Magnitude of **torque** acting on the loop is proportional to the magnitude of the _____

6. A small spring in the galvanometer exerts a torque that opposes the torque resulting from the current; thus, the amount of _____ is proportional to the current

1. Apparatus to convert _ energy	energy to
2. Must rotate 360°, theref direction just position- allowing it to con-	as the loop reaches its vertical
a. To reverse direct is used.	ion, a split-ring commutator
	pieces of graphite) make ommutator , allowing the loop
	arranged so that each half of anges brushes just as loop sition.
loop- resulting in ch	es current in the anging of forces acting on the to continue to rotate
e. <i>ma</i> on a shaft in electri proportional to nBl	
Commutator	S Brush
e Force on a Single Charg	ged Particle
1. Charged particles do no wire, but can move in any	-

2. The picture tube (or cathode ray tube) in a TV uses

