1. $m=p / v ; m=(10.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}) /(1.5 \mathrm{~m} / \mathrm{sec}) ; m=6.7 \mathrm{~kg}$
2. $v=p / m ; v=(1000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}) /(2.5 \mathrm{~kg}) ; v=400 \mathrm{~m} / \mathrm{sec}$
3. $p=m v$
(mass is conventionally expressed in kilograms)
$p=(0.045 \mathrm{~kg})(75.0 \mathrm{~m} / \mathrm{sec})$
$p=3.38 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}$
4. $p_{\text {(before firing })}=p_{\text {(after firing })}$
$m_{1} v_{1}+m_{2} v_{2}=m_{3} v_{3}+m_{4} v_{4}$
$400 \mathrm{~kg}(0 \mathrm{~m} / \mathrm{sec})+10 \mathrm{~kg}(0 \mathrm{~m} / \mathrm{sec})=400 \mathrm{~kg}\left(v_{2}\right)+10 \mathrm{~kg}(20 \mathrm{~m} / \mathrm{s})$
$0=400 \mathrm{~kg}(\mathrm{v} 2)+200 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}\left(v_{2}\right)=(-200 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}) / 400 \mathrm{~kg}\left(v_{2}\right)=-0.50 \mathrm{~m} / \mathrm{sec}$
5. $\mathrm{p}_{\text {(before throwing) }}=\mathrm{p}_{\text {(after throwing) }}$
$m_{1} v_{1}+m_{2} v_{2}=m_{3} v_{3}+m_{4} v_{4}$
$0=m_{1}(0.05 \mathrm{~m} / \mathrm{sec})+0.5 \mathrm{~kg}(10.0 \mathrm{~m} / \mathrm{sec})$
$m_{1}=(-0.5 \mathrm{~kg})(10.0 \mathrm{~m} / \mathrm{sec}) /(0.05 \mathrm{~m} / \mathrm{sec})$
"Big" Al's mass + the skateboard $\left(m_{1}\right)=100 \mathrm{~kg}$
6. Answers are:

$$
\text { a. } \begin{aligned}
p & =m v+\Delta p ; p=m v+F \Delta t \\
p & =(80 \mathrm{~kg})(3.0 \mathrm{~m} / \mathrm{sec})+(800 \mathrm{~N})(0.30 \mathrm{sec}) \\
p & =480 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

b. $v=p / m ; v=(480 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}) / 80 \mathrm{~kg} ; v=6.0 \mathrm{~m} / \mathrm{sec}$
7. Answers are:
a. $\quad p=m v ; p=(2000 \mathrm{~kg})(30 \mathrm{~m} / \mathrm{sec}) ; p=60,000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}$
b. $F \Delta t=m \Delta v$
$F=(m \Delta v) /(\Delta t) ; F=(60,000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}) /(0.72 \mathrm{sec})$ $F=83,000 \mathrm{~N}$
8. Answers are:
a. $\quad P=(\#$ of people $)(m v) ; p=\left(2.0 \times 10^{9}\right)(60 \mathrm{~kg})(7.0 \mathrm{~m} / \mathrm{sec})$; $p=8.4 \times 1,0^{1 \mathrm{It}} \mathrm{kg} \cdot \mathrm{m} / \mathrm{sec}$
b. $p_{\text {(before jumping) }}=p_{\text {(after jumping })}$
$m_{1} v_{1}+m_{2} v_{2}=m_{3} v_{3}+m_{4} v_{4}$
$0=8.4 \times 10^{11} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}+5.98 \times 10^{24}\left(v_{4}\right)$;
$\left(v_{4}\right)=\left(-8.4 \times 10^{11} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}\right) / 5.98 \times 10^{24}$
Earth moves beneath their feet at the speed, $v_{4}=-1.4 \times 10^{-13} \mathrm{~m} / \mathrm{sec}$
9. Answers are:
a. $p=m v ; p=(60 \mathrm{~kg})(6.00 \mathrm{~m} / \mathrm{sec}) ; p=360 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}$
b. $v_{\mathrm{av}}=\left(v_{i}+v_{f}\right) / 2 ; v_{\mathrm{av}}=(6.00 \mathrm{~m} / \mathrm{sec}+0 \mathrm{~m} / \mathrm{sec}) / 2=3.00 \mathrm{~m} / \mathrm{sec}$
$\Delta t=\mathrm{d} / \Delta \mathrm{V} ; \Delta \mathrm{t}=0.10 \mathrm{~m} / 3.00 \mathrm{~m} / \mathrm{sec} ; \Delta \mathrm{t}=0.033 \mathrm{sec}$
$\mathrm{F} \Delta \mathrm{t}=\mathrm{m} \Delta \mathrm{V} ; \mathrm{F}=(\mathrm{m} \Delta \mathrm{V}) / \Delta \mathrm{t} ;$
$\mathrm{F}=(60 \mathrm{~kg})(6.00 \mathrm{~m} / \mathrm{sec}) /(0.033 \mathrm{sec}) ; \mathrm{F}=11,000 \mathrm{~N}$
10. Since the gun and bullet are stationary before being fired, the momentum of the system is zero. The "kick" of the gun is the momentum of the gun that is equal but opposite to that of the bullet maintaining the "zero" momentum of the system.
11. It means that momentum is transferred without loss.

