Newton's First Law

WHS Physics

Facts about Force

- Unit is the NEWTON(N)
- Is by definition a push or a pull
- Can exist during physical contact (Tension, Friction, Applied Force)
- Can exist with NO physical contact, called FIELD FORCES (gravitational, electric, etc)

Newton's First Law - The Law of Inertia

INERTIA - a quantity of matter, also called MASS. Italian for "LAZY". Unit for MASS = kilogram.
Weight or Force due to Gravity is how your MASS is effected by gravity.

$$
W=m g
$$

NOTE: MASS and WEIGHT are NOT the same thing. MASS never changes When an object moves to a different planet.

What is the weight of an 85.3-kg person on earth? On Mars ($\mathrm{g}=3.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$) ?

$$
\begin{aligned}
& W=m g \rightarrow W=(85.3)(9.8)=835.94 N \\
& W_{M A R S}=(85.3)(3.2)=272.96 N
\end{aligned}
$$

Newton's First Law

An object in motion remains in motion in a straight line and at a constant speed $O R$ an object at rest remains at rest, UNLESS acted upon by an EXTERNAL (unbalanced) Force.
There are TWO conditions here and one constraint.
Condition \#1 - The object CAN move but must be at a CONSTANT SPEED Condition \#2 - The object is at REST
Constraint - As long as the forces are BALANCED!!!!! And if all the forces are balanced the SUM of all the forces is ZERO.

The bottom line: There is NO ACCELERATION in this case AND the object must be at EQILIBRIUM (All the forces cancel out).

$$
a c c=0 \rightarrow \sum F=0
$$

Scalar

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it.
Magnitude - A numerical value with units.

Scalar Example	Magnitude
Speed	$20 \mathrm{~m} / \mathrm{s}$
Distance	10 m
Age	15 years
Heat	1000 calories

Vector

A VECTOR is ANY quantity in physics that has BOTH MAGNITUDE and DIRECTION.

Vector	Magnitude \& Direction
Velocity	$20 \mathrm{~m} / \mathrm{s}, \mathrm{N}$
Acceleration	$10 \mathrm{~m} / \mathrm{s} / \mathrm{s}, \mathrm{E}$
Force	5 N, West

$\vec{v}, \vec{x}, \vec{a}, \vec{F}$
Vectors are typically illustrated by drawing an ARROW above the symbol. The arrow is used to convey direction and magnitude.

Free Body Diagrams

A pictorial representation of forces complete with labels.

-Weight(mg) - Always drawn from the center, straight down -Force $\operatorname{Normal}\left(\mathrm{F}_{\mathrm{N}}\right)$ - A surface force always drawn perpendicular to a surface. -Tension(T or F_{T}) - force in ropes and always drawn AWAY from object.
-Friction(Ff)- Always drawn opposing the motion.

Free Body Diagrams

Newton's First Law - The Law of "EQUILIBRIUM"
Since the $F_{\text {net }}=0$, a system moving at a constant speed or at rest MUST be at "EQUILIBRIUM".

TIPS for solving problems

- Draw a FBD
- Resolve anything into COMPONENTS
- Write equations of equilibrium
- Solve for unknowns

Example

A 10-kg box is being pulled across the table to the right at a constant speed with a force of 50N.
a) Calculate the Force of Friction $F_{a}=F_{f}=50 \mathrm{~N}$
a) Calculate the Force Normal

$$
m g=F_{n}=(10)(9.8)=98 N
$$

Example

Suppose the same box is now pulled at an angle of 30 degrees above the horizontal.
a) Calculate the Force of Friction $F_{a x}=F_{a} \cos \theta=50 \cos 30=43.3 \mathrm{~N}$ $F_{f}=F_{a x}=43.3 \mathrm{~N}$
a) Calculate the Force Normal

$$
\begin{aligned}
& F_{N} \neq m g! \\
& F_{N}+F_{a y}=m g \\
& F_{N}=m g-F_{a y} \rightarrow(10)(9.8)-50 \sin 30 \\
& F_{N}=73 \mathrm{~N}
\end{aligned}
$$

Example

A cafe sign with a mass of 65.5 kg is being held up by 2 cables as shown in the picture to the left. Calculate the tension in each of the ropes.

Example

A cafe sign with a mass of 65.5 kg is being held up by 2 cables as shown in the picture to the left. Calculate the tension in each of the ropes.

$$
X \text { - Direction }
$$

$$
T_{2} \cos 35=T_{1} \cos 19
$$

