

Unit 1B

Scientific Notation & Unit Conversions

Note-Taking Guide and Questions to Consider TEACHER

After watching the video segment, write down key points, main ideas, and big questions.

Objective(s):

- Understand the importance of units, and recognize the SI units for mass, time, and distance.
- Convert from one metric unit to another and between metric units and non-metric units using conversion factors.
- Convert numbers from standard notation to scientific notation and from scientific notation to standard notation.

Notes:	During the video segment, use words, phrases, or drawings to take notes.

Summary:

After watching the video segment, write at least three sentences explaining what you learned. You may ask yourself: "If I was going to explain this to someone else, what would I say?"

Unit 1B Scientific Notation & Unit Conversions

Note-Taking Guide and Questions to Consider TEACHER

Answer the following.

 What are the SI units for distance, mass, ar 	nd time?	. and	mass. a	distance.	tor	units	SI	the	are	What	1.
--	----------	-------	---------	-----------	-----	-------	----	-----	-----	------	----

	distance _	meters			
	mass	kilograms			
	time	seconds			
2.	When multip	le base units are cor	mbined to form new units, these are called $_$	derived	_ units.
3.	What are use	ed to change a meas	ured quantity from one unit to another?	conversion factors	
I.	When setting	g up a conversion, w	here does the initial unit go in the conversion	n factor?	
		When multi	iplying a value by a conversion factor, the sta	arting unit	
		must go on th	ne bottom of the conversion factor so that it	cancels out.	

5. List the number of base units for the six common prefixes below:

Prefix	Number of Base Units
kilo	1000
hecto	100
deca	10
base unit	1
deci	0.1
centi	0.01
milli	0.001

 $2,000,000 = \underline{2.0 \times 10^6}$

 $0.0006 = \underline{\qquad 6.0 \times 10^4}$

Unit 1B

Scientific Notation & Unit Conversions

Note-Taking Guide and Questions to Consider TEACHER

	What about a negative exponent?
	Positive exponents represent numbers that are very large.
	Negative exponents represent numbers that are very small.
7.	In scientific notation, the starting coefficient of a number must be within what range?
	The starting coefficient of a number in scientific notation
	must be greater than or equal to 1 and less than 10.
8.	Convert the following numbers into scientific notation:

6. If a number in scientific notation has a positive exponent, is this a very large or very small number?