PHYSICS
gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.

1. Convert 2.5 feet into inches. ($1 \mathrm{ft}=12 \mathrm{in}$)

$$
\left(\frac{2.5 \mathrm{ft}}{1}\right)\left(\frac{12 \mathrm{in}}{1 \mathrm{ft}}\right)=\frac{30 \mathrm{in}}{1}=30 \mathrm{in}
$$

2. Convert 32 centimeters into inches. ($1 \mathrm{in}=\mathbf{2} .54 \mathrm{~cm}$)

$$
\left(\frac{32 \mathrm{~cm}}{1}\right)\left(\frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}\right)=\frac{32 \mathrm{in}}{2.54}=12.6 \mathrm{in}
$$

3. Convert 68 centimeters into feet.

$$
\left(\frac{68 \mathrm{~cm}}{1}\right)\left(\frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}\right)\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right)=\frac{68 \mathrm{ft}}{30.48}=2.23 \mathrm{ft}
$$

4. Convert 142 weeks into years. ($1 \mathrm{yr}=365.25 \mathrm{~d}$; 1 week = 7 d)

$$
\left(\frac{142 w k}{1}\right)\left(\frac{7 d}{1 w k}\right)\left(\frac{1 y r}{365.25 d}\right)=\frac{994 y r}{365.25}=2.72 y r
$$

5. Convert 8.1 kilograms into grams.

Either move the decimal three places to the right $(8,100 \mathrm{~g})$ or use a conversion factor:
$\left(\frac{8.1 \mathrm{~kg}}{1}\right)\left(\frac{1,000 \mathrm{~g}}{1 \mathrm{~kg}}\right)=\frac{8,100 \mathrm{~g}}{1}=8,100 \mathrm{~g}$
6. Convert 376 centimeters into meters.

Either move the decimal two places to the left (3.76 m) or use a conversion factor:

$$
\left(\frac{376 \mathrm{~cm}}{1}\right)\left(\frac{0.01 \mathrm{~m}}{1 \mathrm{~cm}}\right)=\frac{3.76 \mathrm{~m}}{1}=3.76 \mathrm{~m}
$$

PHYSICS
INMOTION $2>$
gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.
7. Convert 1.5 seconds to milliseconds.

$$
\left(\frac{1.5 \mathrm{~s}}{1}\right)\left(\frac{1 \mathrm{~ms}}{0.001 \mathrm{~s}}\right)=\frac{1.5 \mathrm{~ms}}{0.001}=1,500 \mathrm{~ms}
$$

8. Convert $6,400,000$ milligrams to kilograms.

$$
\left(\frac{6,400,000 \mathrm{mg}}{1}\right)\left(\frac{0.001 \mathrm{~g}}{1 \mathrm{mg}}\right)\left(\frac{1 \mathrm{~kg}}{1,000 \mathrm{~g}}\right)=\frac{6,400 \mathrm{~kg}}{1,000}=6.4 \mathrm{~kg}
$$

9. Convert the following numbers from standard notation to scientific notation:

$$
\begin{aligned}
& -3,600,000,000=\frac{-3.6 \times 10^{9}}{0.000033=} \\
& \begin{aligned}
& 48,000,000=\frac{4.8 \times 10^{7}}{-0.000000053}= \\
&-5.3 \times 10^{-8}
\end{aligned}
\end{aligned}
$$

10. Convert the following numbers from scientific notation to standard notation:

$$
\begin{array}{ll}
5.2 \times 10^{-4}= & 0.00052 \\
-2.9 \times 10^{5}= & -290,000
\end{array}
$$

7.1×10^{8}	$=\frac{710,000,000}{-0.0018}$
-1.8×10^{-3}	$=$

