gpb.org/physics-motion

Unit 1D
Vectors \& Scalars

Work each of the following problems. SHOW ALL WORK.

1. Classify the following measurements as vector or scalar quantities:

1.0 m	$=\frac{\text { scalar }}{-3.2 \mathrm{~N}}=\frac{\text { vector }}{}$
$5.3 \mathrm{~m} / \mathrm{s}^{2}$ left	$=\frac{\text { vector }}{9.2 \mathrm{~kg}}=$scalar

2.35 m north	$=$
4.2 s	$=$
$6.8 \mathrm{~cm}^{2}$	vector
$=$	scalar
$7.3 \mathrm{~km}, 30^{\circ} \mathrm{NE}$	$=$vector

2. Add the following vectors together using the tip-to-tail method, and determine the magnitude of the resultant.
a.

b. $\xrightarrow{2 \mathrm{~m}} \xrightarrow{4 \mathrm{~m}}$

c. $\xrightarrow{4 \mathrm{~m}} \stackrel{2 \mathrm{~m}}{\longleftarrow}$
\qquad
$\cdots---\rightarrow 2 m$ m-2m=2m
d.

e.

PHYSICS
gpb.org/physics-motion

Unit 1D
 Vectors \& Scalars
 Practice Problems TEACHER

f.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =(4.5 m)^{2}+(3 m)^{2} \\
c^{2} & =20.25 m^{2}+9 m^{2} \\
c^{2} & =29.25 m^{2} \\
c & =5.41 m
\end{aligned}
$$

g.

