

Unit 1E Graphical Resolution of Vectors

Note-Taking Guide and Questions to Consider TEACHER

After watching the video segment, write down key points, main ideas, and big questions.

Objective(s):

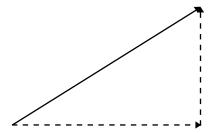
- Graphically add and subtract vector quantities.
- Resolve vectors into their components using graphical methods.

Notes:

During the video segment, use words, phrases, or drawings to take notes.

Summary:

After watching the video segment, write at least three sentences explaining what you learned. You may ask yourself: "If I was going to explain this to someone else, what would I say?"


Unit 1E Graphical Resolution of Vectors

Note-Taking Guide and Questions to Consider TEACHER

Answer the following.

1.	What are the two parts of a vector quantity?
	magnitude (i.e., how much) and direction
2.	What does the sign of a vector quantity represent?
	The sign of a vector quantity represents the direction.
3.	If two vector quantities are in the same direction, how would you determine the resultant of these two vectors?
	You would add their magnitudes in order to determine the resultant.
4.	If two vector quantities are in opposite directions, how would you determine the resultant of these two vectors?
	You would subtract their magnitudes in order to determine the resultant.
5.	What does it mean for a vector quantity to be in two dimensions?
	A two-dimensional vector has components in both the horizontal and vertical dimensions.

6. Resolve the two-dimensional vector below into two, one-dimensional vectors:

