gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.

1. A dog runs 5 m to the right then comes back 2 m to the left.
a. Draw a vector diagram of the dog's movement.

b. Use the tip-to-tail method to determine how far the dog moves from its initial position.

c. Find the resultant displacement mathematically.

$$
5 m-2 m=3 m \text { to the right }
$$

2. A passenger rides the subway 7 km north, 5 km south, then $\mathbf{2 k m}$ north.
a. Draw a vector diagram of the passenger's movement on the subway.

b. Use the tip-to-tail method to determine how far the passenger travels from her initial position.

c. Find the resultant displacement mathematically.
gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.
3. A rocket launched from an initial height of 1.2 m reaches a height of 14 m then falls to the ground.
a. Draw a vector diagram of the rocket's movement.

b. How far away vertically does the rocket land from its initial position?

c. Find the resultant displacement mathematically.
$-14 m+12.8 m=-1.2 m$ (or $1.2 m$ below its original position)
4. While completing an obstacle course, a runner moves 30 m north, 20 m south, then another 5 m north. At the end of the course, how far away is the runner from his starting point?

Make north the positive direction and south the negative direction:

$$
\begin{aligned}
& R_{\text {тот }}=R_{1}+R_{2}+R_{3} \\
& R_{\text {тот }}=30 \mathrm{~m}-20 \mathrm{~m}+5 \mathrm{~m} \\
& R_{\text {тот }}=15 \mathrm{~m} \text { north }
\end{aligned}
$$

gpb.org/physics-motion

Unit 1F
Mathematical Resolution of Vectors Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.

5. Two children chase each other through a playground, running 10 m north, 6 m east, then 2 m south. At the end of the game, how far are the children from where they started? Use a component table to solve.

Vector	x-component	y-component
1	0 m	+10 m
2	+6 m	0 m
3	0 m	-2 m
TOTAL	+6 m	+8 m

$R=\sqrt{(\Sigma x)^{2}+(\Sigma y)^{2}}$
$R=\sqrt{(6 m)^{2}+(8 m)^{2}}$
$R=\sqrt{36 m^{2}+64 m^{2}}$
$R=\sqrt{100 m^{2}}$
$R=10 m$ north of east
6. The local high school is installing new bleachers at the stadium and must also add handrails to meet code. The students know the bleachers are 8 m tall, and they measure the depth of the bleachers at 7 m . How long must the handrails be to go along the bleachers from bottom to top? Use a component table to solve.

Vector	x-component	y-component
1	0 m	8 m
2	7 m	0 m
TOTAL	7 m	8 m

$$
\begin{aligned}
& R=\sqrt{\left(\sum x\right)^{2}+(\Sigma y)^{2}} \\
& R=\sqrt{(7 m)^{2}+(8 m)^{2}} \\
& R=\sqrt{49 m^{2}+64 m^{2}} \\
& R=\sqrt{113 m^{2}} \\
& R=10.63 m
\end{aligned}
$$

gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.

7. How far away from her initial position is a cyclist who travels 18 km east, 12 km south, and 9 km west during her ride? Use a component table to solve.

Vector	x-component	y-component
1	+18 km	0 km
2	0 km	-12 km
3	-9 km	0 km
TOTAL	9 km	-12 km

$$
\begin{aligned}
& R^{2}=\sqrt{(\Sigma x)^{2}+\left(\sum y\right)^{2}} \\
& R^{2}=\sqrt{(9 k m)^{2}+(-12 k m)^{2}} \\
& R^{2}=\sqrt{81 \mathrm{~km}^{2}+144 \mathrm{~km}^{2}} \\
& R^{2}=\sqrt{225 \mathrm{~km}^{2}} \\
& R=15 \mathrm{~km} \text { south of east }
\end{aligned}
$$

8. While performing the halftime show on Friday night, a marcher completes a path that is 15 yd east, 5 yd south, and 10 yd north. How far is the marcher from his initial position? Use a component table to solve.

Vector	x-component	y-component
1	+15 yd	0 yd
2	0 yd	-5 yd
3	0 yd	+10 yd
TOTAL	+15 yd	+5 yd

$$
\begin{aligned}
& R^{2}=\sqrt{(\Sigma x)^{2}+(\Sigma y)^{2}} \\
& R^{2}=\sqrt{(15 y d)^{2}+(5 y d)^{2}} \\
& R^{2}=\sqrt{225 y d^{2}+25 y d^{2}} \\
& R^{2}=\sqrt{250 y d^{2}} \\
& R=15.81 y d \text { north of east }
\end{aligned}
$$

