gpb.org/physics-motion

Unit 2B

Work each of the following problems. SHOW ALL WORK.

1. A car travels a distance of $\mathbf{1 0 0} \mathbf{k m}$ in $\mathbf{2}$ hours. What is the average speed of the car ($\mathbf{k m} / \mathrm{h}$)?

$$
s=\frac{d}{t}=\frac{100 \mathrm{~km}}{2 \mathrm{~h}}=50 \mathrm{~km} / \mathrm{h}
$$

2. An NFL wide receiver prospect runs 40 m in 4.5 seconds. What is the average speed of the wide receiver (m / s)?

$$
s=\frac{d}{t}=\frac{40 \mathrm{~m}}{4.5 \mathrm{~s}}=8.9 \mathrm{~m} / \mathrm{s}
$$

3. The average human walks at a speed of 5 km per hour. If your PE teacher asks you to walk for 30 minutes in gym class, how far would you walk (km)?

$$
\begin{aligned}
s & =\frac{d}{t} \\
5 \mathrm{~km} / \mathrm{h} & =\frac{d}{0.5 \mathrm{~h}} \\
(0.5 \mathrm{~h})(5 \mathrm{~km} / \mathrm{h}) & =d \\
d & =2.5 \mathrm{~km}
\end{aligned}
$$

 you live $\mathbf{8} \mathbf{~ k m}(\mathbf{8 , 0 0 0} \mathbf{~ m})$ from school, how long will it take you to get to school if there is no traffic? Convert your answer to minutes.

$$
\begin{aligned}
s & =\frac{d}{t} \\
20 \mathrm{~m} / \mathrm{s} & =\frac{8000 \mathrm{~m}}{t} \\
(t) 20 \mathrm{~m} / \mathrm{s} & =8000 \mathrm{~m} \\
t & =400 \mathrm{~s} \\
\frac{400 \mathrm{~s}}{1}\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right) & =\frac{400 \mathrm{~min}}{60}=6.67 \mathrm{~min}
\end{aligned}
$$

gpb.org/physics-motion

Unit 2B

Work each of the following problems. SHOW ALL WORK.
5. A ladybug walks 10 cm forward then $\mathbf{5 c m}$ backward in $\mathbf{2 0}$ seconds. What is the average speed of the ladybug?

$$
s=\frac{d}{t}=\frac{15 \mathrm{~cm}}{20 \mathrm{~s}}=0.75 \mathrm{~cm} / \mathrm{s}
$$

6. Using the information from the previous question, what is the average velocity of the ladybug?

$$
v=\frac{\Delta x}{t}=\frac{5 \mathrm{~cm}}{20 \mathrm{~s}}=0.25 \mathrm{~cm} / \mathrm{s}
$$

7. A city bus travels $\mathbf{6}$ blocks east and 8 blocks north. Each block is 100 m long. If the bus travels this distance in 15 minutes, what is the average speed of the bus (m / s)?

$$
s=\frac{d}{t}=\frac{1400 \mathrm{~m}}{900 \mathrm{~s}}=1.56 \mathrm{~m} / \mathrm{s}
$$

8. Using the information from the previous question, what is the average velocity of the city bus?

$$
\begin{aligned}
& R=\sqrt{(\Sigma x)^{2}+(\Sigma y)^{2}} \\
& R=\sqrt{(600 \mathrm{~m})^{2}+(800 \mathrm{~m})^{2}} \\
& R=\sqrt{360000 \mathrm{~m}^{2}+640000 \mathrm{~m}^{2}} \\
& R=\sqrt{1000000 \mathrm{~m}^{2}} \\
& R=1000 \mathrm{~m} \\
& v=\frac{\Delta x}{t}=\frac{1000 \mathrm{~m}}{900 \mathrm{~s}}=1.11 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.
9. A jogger runs 6 km north, 5 km east, then another 4 km north. Her average speed $\mathbf{8} \mathrm{km} / \mathrm{h}$. How long will it take her to complete her run?

The total distance traveled by the jogger is 15 km .

$$
\begin{aligned}
8^{\mathrm{km} / \mathrm{h}} & =\frac{15 \mathrm{~km}}{t} \\
8^{\mathrm{km} / \mathrm{h}}(t) & =15 \mathrm{~km} \\
t & =1.88 \mathrm{~h}
\end{aligned}
$$

10. Using the information from the previous question, what is her average velocity during this time?

The total displacement must be determined in order to find the average velocity.

Vector	x-component	y-component
1	0 km	6 km
2	5 km	0 km
3	0 km	4 km
Total	5 km	10 km

$$
\begin{aligned}
R & =\sqrt{(\Sigma x)^{2}+(\Sigma y)^{2}} \\
R & =\sqrt{(5 \mathrm{~km})^{2}+(10 \mathrm{~m})^{2}} \\
R & =\sqrt{25 \mathrm{~km}^{2}+100 \mathrm{~km}^{2}} \\
R & =\sqrt{125 \mathrm{~km}^{2}} \\
R & =11.2 \mathrm{~km} \\
v & =\frac{\Delta x}{t}=\frac{11.2 \mathrm{~km}}{1.88 \mathrm{~h}}=5.96 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

