Work each of the following problems. SHOW ALL WORK.

1. A sports car accelerates from rest to $26.8 \mathrm{~m} / \mathrm{s}$ (roughly $60 \mathrm{mi} / \mathrm{h}$) in 5.1 seconds. What is the acceleration of the car?

$$
\begin{array}{rlrl}
v_{i} & =0 \mathrm{~m} / \mathrm{s} & v_{f} & =v_{i}+a t \\
v_{f} & =26.8 \mathrm{~m} / \mathrm{s} & 26.8 \mathrm{~m} / \mathrm{s} & =0 \mathrm{~m} / \mathrm{s}+a(5.1 \mathrm{~s}) \\
t & =5.1 \mathrm{~s} & 26.8 \mathrm{~m} / \mathrm{s} & =a(5.1 \mathrm{~s}) \\
a & =? & a & =5.25 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

2. A child goes down a slide, starting from rest. If the length of the slide is $\mathbf{2} \mathbf{m}$ and it takes the child $\mathbf{3}$ seconds to go down the slide, what is the child's acceleration?

$$
\begin{aligned}
& d=v_{i} t+\frac{1}{2} a t^{2} \\
& \begin{array}{l}
v_{i}=0 \mathrm{~m} / \mathrm{s} \\
d=2 \mathrm{~m}
\end{array} \quad 2 m=(0 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2} a(3 \mathrm{~s})^{2} \\
& t=3 s \quad 2 m=\frac{1}{2} a\left(9 s^{2}\right) \\
& a=? \quad 4 m=a\left(9 s^{2}\right) \\
& a=0.44 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

3. How far does a sled travel in 5 seconds while accelerating from $4 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
v_{i} & =4 \mathrm{~m} / \mathrm{s} & & d=\frac{1}{2}\left(v_{i}+v_{f}\right) t \\
v_{f} & =10 \mathrm{~m} / \mathrm{s} & & d=\frac{1}{2}(4 \mathrm{~m} / \mathrm{s}+10 \mathrm{~m} / \mathrm{s})(5 \mathrm{~s}) \\
t & =5 \mathrm{~s} & & d=\frac{1}{2}(14 \mathrm{~m} / \mathrm{s})(5 \mathrm{~s}) \\
d & =? & & d=35 \mathrm{~m}
\end{aligned}
$$

4. A fighter jet is catapulted off an aircraft carrier from rest to $\mathbf{7 5} \mathbf{~ m} / \mathrm{s}$. If the aircraft carrier deck is 100 m long, what is the acceleration of the jet?

$$
\begin{array}{rlrl}
v_{i} & =0 \mathrm{~m} / \mathrm{s} & v_{f}^{2} & =v_{i}^{2}+2 \mathrm{ad} \\
v_{f} & =75 \mathrm{~m} / \mathrm{s} & (75 \mathrm{~m} / \mathrm{s})^{2} & =(0 \mathrm{~m} / \mathrm{s})^{2}+2 \mathrm{a}(100 \mathrm{~m}) \\
d & =100 \mathrm{~m} & 5625 \mathrm{~m} & =2 \mathrm{a}(100 \mathrm{~m}) \\
a & =? & a & =28.13 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.

5. A driver notices an upcoming speed limit change from $\mathbf{4 5} \mathbf{~ m i} / \mathrm{h}(\mathbf{2 0} \mathbf{~ m} / \mathrm{s})$ to $\mathbf{2 5 ~ \mathbf { ~ m i } / \mathrm { h }} \mathbf{(1 1 \mathrm { m } / \mathrm { s }) \text { . If she estimates }}$ the speed limit will change in 50 m , what acceleration is needed to reach the new speed limit before it begins?

$$
\begin{array}{rlrl}
v_{i} & =20 \mathrm{~m} / \mathrm{s} & v_{f}^{2} & =v_{i}^{2}+2 \mathrm{ad} \\
v_{f} & =11 \mathrm{~m} / \mathrm{s} & (11 \mathrm{~m} / \mathrm{s})^{2} & =(20 \mathrm{~m} / \mathrm{s})^{2}+2 a(50 \mathrm{~m}) \\
d & =50 \mathrm{~m} & 121 \mathrm{~m}^{2} / \mathrm{s}^{2} & =400 \mathrm{~m}^{2} / \mathrm{s}^{2}+2 a(50 \mathrm{~m}) \\
a & =? & -279 \mathrm{~m}^{2} / \mathrm{s}^{2} & =2 a(50 \mathrm{~m}) \\
& a & =-2.79 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

6. One minute after takeoff, a rocket carrying the space shuttle into outer space reaches a speed of $447 \mathrm{~m} / \mathrm{s}$. What was the average acceleration of the rocket during that initial minute?

$$
\begin{array}{rlrl}
v_{i} & =0 \mathrm{~m} / \mathrm{s} & v_{f} & =v_{i}+a t \\
v_{f} & =447 \mathrm{~m} / \mathrm{s} & 447 \mathrm{~m} / \mathrm{s} & =0 \mathrm{~m} / \mathrm{s}+a(60 \mathrm{~s}) \\
t & =1 \mathrm{~min}=60 \mathrm{~s} & 447 \mathrm{~m} / \mathrm{s} & =a(60 \mathrm{~s}) \\
a & =? & a & =7.45 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

7. A sprinter accelerates from rest to a velocity of $\mathbf{1 2 ~ m} / \mathrm{s}$ in the first $\mathbf{6}$ seconds of the $\mathbf{1 0 0}$-meter dash.
a. How far does the sprinter travel during the first $\mathbf{6}$ seconds?

$$
\begin{aligned}
v_{i} & =0 \mathrm{~m} / \mathrm{s} & & d=\frac{1}{2}\left(v_{i}+v_{f}\right) t \\
v_{f} & =12 \mathrm{~m} / \mathrm{s} & & d=\frac{1}{2}(0 \mathrm{~m} / \mathrm{s}+12 \mathrm{~m} / \mathrm{s})(6 \mathrm{~s}) \\
t & =6 \mathrm{~s} & & d=\frac{1}{2}(12 \mathrm{~m} / \mathrm{s})(6 \mathrm{~s}) \\
d & =? & & d=36 \mathrm{~m}
\end{aligned}
$$

b. How much farther does the sprinter have to travel to reach the finish line?
gpb.org/physics-motion

Acceleration and Kinematic Equations Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.

c. If the sprinter travels at a constant velocity of $12 \mathrm{~m} / \mathrm{s}$ for the last 64 m , how long will it take to reach the finish line?

$$
\begin{array}{rlrl}
v & =12 \mathrm{~m} / \mathrm{s} & v & =\frac{d}{t} \\
d & =64 \mathrm{~m} & 12 \mathrm{~m} / \mathrm{s} & =\frac{64 \mathrm{~m}}{t} \\
t & =? & 12 \mathrm{~m} / \mathrm{s}(t) & =64 \mathrm{~m} \\
& t & =5.33 \mathrm{~s}
\end{array}
$$

To get the total time, add the first 6 seconds to these final 5.33 seconds, for a total of 11.33 seconds.
8. The school zone in front of your school has a posted speed limit of $25 \mathrm{mi} / \mathrm{h}$, which is about $11 \mathrm{~m} / \mathrm{s}$. Let's examine the stopping of a car in several different situations.
a. The crossing guard holds up her stop sign, and the driver is paying attention well. The car moves at a constant velocity of $11 \mathrm{~m} / \mathrm{s}$ for 2.3 seconds while the driver reacts, then slows down at a constant rate of $-4.5 \mathrm{~m} / \mathrm{s}^{2}$. What is the stopping distance for the car in this situation?

While the driver is reacting, the car travels at a constant velocity. The first step will be to determine how far the car travels while the driver is reacting:

$$
\begin{array}{rlrl}
v & =11 \mathrm{~m} / \mathrm{s} & v & =\frac{d}{t} \\
t & =2.3 \mathrm{~s} & 11 \mathrm{~m} / \mathrm{s} & =\frac{d}{2.3 \mathrm{~s}} \\
d & =? & (2.3 \mathrm{~s})(11 \mathrm{~m} / \mathrm{s}) & =d \\
d & =25.3 \mathrm{~m}
\end{array}
$$

Next, we must determine how far the car travels while the driver is braking:

$$
\begin{aligned}
v_{i} & =11 \mathrm{~m} / \mathrm{s} \\
v_{f} & =0 \mathrm{~m} / \mathrm{s} \\
a & =4.5 \mathrm{~m} / \mathrm{s}^{2} \\
d & =?
\end{aligned}
$$

$$
\begin{aligned}
v_{f}^{2} & =v_{i}^{2}+2 a d \\
(0 \mathrm{~m} / \mathrm{s})^{2} & =\left(11 \mathrm{~m} / \mathrm{s}^{2}+2\left(-4.5 \mathrm{~m} / \mathrm{s}^{2}\right) d\right. \\
0 & =121 \mathrm{~m}^{2} / \mathrm{s}^{2}+2\left(-4.5 \mathrm{~m} / \mathrm{s}^{2}\right) d
\end{aligned}
$$

The total distance is the sum of the distance the car travels while the driver is reacting plus the distance the car travels as it slows to a stop. The answer is 38.7 m .
gpb.org/physics-motion

Acceleration and Kinematic Equations Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.
b. A child appears to be running into the street ahead. It takes 2.3 seconds for the driver to react and begin to brake, but this time at a rate of $-7.5 \mathrm{~m} / \mathrm{s}^{2}$. What is the stopping distance for the car in this situation?

While the driver is reacting, the car travels at a constant velocity. The first step will be to determine how far the car travels while the driver is reacting:

$$
\begin{array}{rlrl}
v & =11 \mathrm{~m} / \mathrm{s} & v & =\frac{d}{t} \\
t & =2.3 \mathrm{~s} & 11 \mathrm{~m} / \mathrm{s} & =\frac{d}{2.3 \mathrm{~s}} \\
d & =? & (2.3 \mathrm{~s})(11 \mathrm{~m} / \mathrm{s}) & =d \\
d & =25.3 \mathrm{~m}
\end{array}
$$

Next, we must determine how far the car travels while the driver is braking:

$$
\begin{array}{rlrl}
& v_{i}=11 \mathrm{~m} / \mathrm{s} & & =v_{i}^{2}+2 \mathrm{ad} \\
v_{f} & =0 \mathrm{~m} / \mathrm{s} & (0 \mathrm{~m} / \mathrm{s})^{2} & =(11 \mathrm{~m} / \mathrm{s})^{2}+2\left(-7.5 \mathrm{~m} / \mathrm{s}^{2}\right) d \\
a & =-7.5 \mathrm{~m} / \mathrm{s}^{2} & -121 \mathrm{~m}^{2} / \mathrm{s}^{2} & =2\left(-7.5 \mathrm{~m} / \mathrm{s}^{2}\right) d \\
d & =? & -121 \mathrm{~m}^{2} / \mathrm{s}^{2} & =\left(-15 \mathrm{~m} / \mathrm{s}^{2}\right) d \\
& d & =8.1 \mathrm{~m}
\end{array}
$$

The total distance is the sum of the distance the car travels while the driver is reacting plus the distance the car travels as it slows to a stop. The answer is 33.4 m.
c. The driver is looking at her phone and has a total reaction time of 4.6 seconds as the car is moving at a constant speed of $11 \mathrm{~m} / \mathrm{s}$. If the driver slams on her brakes and slows down at a rate of $\mathbf{- 8 . 2} \mathbf{~ m} / \mathrm{s}^{2}$, what is the stopping distance for the car in this situation?

While the driver is reacting, the car travels at a constant velocity. The first step will be to determine how far the car travels while the driver is reacting:

$$
\begin{array}{rlrl}
v & =11 \mathrm{~m} / \mathrm{s} & v & =\frac{d}{t} \\
t & =4.6 \mathrm{~s} & 11 \mathrm{~m} / \mathrm{s} & =\frac{d}{4.6 \mathrm{~s}} \\
d & =? & (11 \mathrm{~m} / \mathrm{s})(4.6 \mathrm{~s}) & =d \\
d & =50.6 \mathrm{~m}
\end{array}
$$

Work each of the following problems. SHOW ALL WORK.
Next, we must determine how far the car travels while the driver is braking:

$$
\begin{array}{rlrl}
v_{i} & =11 \mathrm{~m} / \mathrm{s} & v_{f}^{2} & =v_{i}^{2}+2 \mathrm{ad} \\
v_{f} & =0 \mathrm{~m} / \mathrm{s} & (0 \mathrm{~m} / \mathrm{s})^{2} & =(11 \mathrm{~m} / \mathrm{s})^{2}+2(\\
a & =-8.2 \mathrm{~m} / \mathrm{s}^{2} & 0 & =121 \mathrm{~m}^{2} / \mathrm{s}^{2}+2(. \\
d & -121 \mathrm{~m}^{2} / \mathrm{s}^{2} & =2\left(-8.2 \mathrm{~m} / \mathrm{s}^{2}\right) d \\
d & -121 \mathrm{~m}^{2} / \mathrm{s}^{2} & =\left(-16.4 \mathrm{~m} / \mathrm{s}^{2}\right) d \\
d & =7.4 \mathrm{~m}
\end{array}
$$

The total distance is the sum of the distance the car travels while the driver is reacting plus the distance the car travels as it slows to a stop. The answer is 58 m .

