

Unit 2C Acceleration and Kinematic Equations Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.

1. A sports car accelerates from rest to 26.8 m/s (roughly 60 mi/h) in 5.1 seconds. What is the acceleration of the car?

 $V_i = 0^{m/s}$ $V_f = V_i + at$ $V_f = 26.8^{m/s}$ $26.8^{m/s} = 0^{m/s} + a(5.1s)$ t = 5.1s $26.8^{m/s} = a(5.1s)$ a = ? $a = 5.25^{m/s^2}$

2. A child goes down a slide, starting from rest. If the length of the slide is 2 m and it takes the child 3 seconds to go down the slide, what is the child's acceleration?

$$d = v_{i}t + \frac{1}{2}at^{2}$$

$$v_{i} = 0^{m/s}$$

$$d = 2m$$

$$t = 3s$$

$$a = ?$$

$$d = 2m = (0^{m/s})t + \frac{1}{2}a(3s)^{2}$$

$$2m = \frac{1}{2}a(9s^{2})$$

$$a = 0.44^{m/s^{2}}$$

3. How far does a sled travel in 5 seconds while accelerating from 4 m/s to 10 m/s?

$$d = \frac{1}{2}(v_{i} + v_{f})t$$

$$v_{f} = 10^{m}/s$$

$$d = \frac{1}{2}(4^{m}/s + 10^{m}/s)(5 s)$$

$$t = 5 s$$

$$d = ?$$

$$d = \frac{1}{2}(14^{m}/s)(5 s)$$

$$d = 35 m$$

4. A fighter jet is catapulted off an aircraft carrier from rest to 75 m/s. If the aircraft carrier deck is 100 m long, what is the acceleration of the jet?

$$v_{i} = 0^{m/s} \qquad v_{f}^{2} = v_{i}^{2} + 2 ad$$

$$v_{f} = 75^{m/s} \qquad (75^{m/s})^{2} = (0^{m/s})^{2} + 2 a(100 m)$$

$$d = 100 m \qquad 5625 m = 2 a(100 m)$$

$$a = ? \qquad a = 28.13^{m/s^{2}}$$

Acceleration and Kinematic Equations Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.

PHYSICS

INMOTION

gpb.org/physics-motion

5. A driver notices an upcoming speed limit change from 45 mi/h (20 m/s) to 25 mi/h (11 m/s). If she estimates the speed limit will change in 50 m, what acceleration is needed to reach the new speed limit before it begins?

$$v_{i} = 20 \frac{m}{s}$$

$$v_{f} = 11 \frac{m}{s}$$

$$d = 50 m$$

$$a = ?$$

$$v_{f}^{2} = v_{i}^{2} + 2 ad$$

$$(11 \frac{m}{s})^{2} = (20 \frac{m}{s})^{2} + 2 a(50 m)$$

$$121 \frac{m^{2}}{s^{2}} = 400 \frac{m^{2}}{s^{2}} + 2 a(50 m)$$

$$-279 \frac{m^{2}}{s^{2}} = 2 a(50 m)$$

$$a = -2.79 \frac{m}{s^{2}}$$

6. One minute after takeoff, a rocket carrying the space shuttle into outer space reaches a speed of 447 m/s. What was the average acceleration of the rocket during that initial minute?

$$v_i = 0 \frac{m}{s}$$
 $v_f = v_i + at$
 $v_f = 447 \frac{m}{s}$
 $447 \frac{m}{s} = 0 \frac{m}{s} + a(60 s)$
 $t = 1 \min = 60 s$
 $447 \frac{m}{s} = a(60 s)$
 $a = ?$
 $a = 7.45 \frac{m}{s^2}$

- 7. A sprinter accelerates from rest to a velocity of 12 m/s in the first 6 seconds of the 100-meter dash.
 - a. How far does the sprinter travel during the first 6 seconds?

$$d = \frac{1}{2} (v_{i} + v_{f}) t$$

$$v_{i} = 0^{m/s} \qquad d = \frac{1}{2} (0^{m/s} + 12^{m/s}) (6 s)$$

$$t = 6 s$$

$$d = ? \qquad d = \frac{1}{2} (12^{m/s}) (6 s)$$

$$d = 36 m$$

b. How much farther does the sprinter have to travel to reach the finish line?

Unit 2C Acceleration and Kinematic Equations Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.

c. If the sprinter travels at a constant velocity of 12 m/s for the last 64 m, how long will it take to reach the finish line?

$$v = 12 \frac{m}{s} \qquad v = \frac{d}{t}$$

$$d = 64 m$$

$$t = ?$$

$$12 \frac{m}{s} = \frac{64 m}{t}$$

$$12 \frac{m}{s}(t) = 64 m$$

$$t = 5.33 s$$

To get the total time, add the first 6 seconds to these final 5.33 seconds, for a total of 11.33 seconds.

- 8. The school zone in front of your school has a posted speed limit of 25 mi/h, which is about 11 m/s. Let's examine the stopping of a car in several different situations.
 - a. The crossing guard holds up her stop sign, and the driver is paying attention well. The car moves at a constant velocity of 11 m/s for 2.3 seconds while the driver reacts, then slows down at a constant rate of -4.5 m/s². What is the stopping distance for the car in this situation?

While the driver is reacting, the car travels at a constant velocity. The first step will be to determine how far the car travels while the driver is reacting:

$$v = 11 \frac{m}{s}$$

$$t = 2.3 s$$

$$d = ?$$

$$(2.3 s)(11 \frac{m}{s}) = d$$

$$d = 25.3 m$$

Next, we must determine how far the car travels while the driver is braking:

$$v_{i} = 11 \frac{m}{s} \qquad v_{f}^{2} = v_{i}^{2} + 2ad \qquad -121 \frac{m^{2}}{s^{2}} = 2(-4.5 \frac{m}{s})d -121 \frac{m^{2}}{s^{2}} = 2(-4.5 \frac{m}{s})d -121 \frac{m^{2}}{s^{2}} = (-9 \frac{m}{s})d -121 \frac{m^{2}}{s^{2}} = (-9 \frac{m}{s})d -121 \frac{m^{2}}{s^{2}} = (-9 \frac{m}{s})d d = 13.4 m$$

The total distance is the sum of the distance the car travels while the driver is reacting plus the distance the car travels as it slows to a stop. The answer is 38.7 m.

Acceleration and Kinematic Equations *Practice Problems TEACHER*

Work each of the following problems. SHOW ALL WORK.

PHYSICS

INMOTION

gpb.org/physics-motion

b. A child appears to be running into the street ahead. It takes 2.3 seconds for the driver to react and begin to brake, but this time at a rate of -7.5 m/s². What is the stopping distance for the car in this situation?

While the driver is reacting, the car travels at a constant velocity. The first step will be to determine how far the car travels while the driver is reacting:

$$v = 11 \frac{m}{s} \qquad v = \frac{d}{t}$$

$$t = 2.3 s \qquad 11 \frac{m}{s} = \frac{d}{2.3 s}$$

$$d = ? \qquad (2.3 s)(11 \frac{m}{s}) = d$$

$$d = 25.3 m$$

Next, we must determine how far the car travels while the driver is braking:

$$v_{i} = 11 \frac{m}{s} \qquad v_{f}^{2} = v_{i}^{2} + 2 ad$$

$$v_{f} = 0 \frac{m}{s} \qquad (0 \frac{m}{s})^{2} = (11 \frac{m}{s})^{2} + 2(-7.5 \frac{m}{s})d$$

$$a = -7.5 \frac{m}{s^{2}} \qquad -121 \frac{m^{2}}{s^{2}} = 2(-7.5 \frac{m}{s})d$$

$$-121 \frac{m^{2}}{s^{2}} = (-15 \frac{m}{s})d$$

$$d = ? \qquad d = 8.1m$$

The total distance is the sum of the distance the car travels while the driver is reacting plus the distance the car travels as it slows to a stop. The answer is 33.4 m.

c. The driver is looking at her phone and has a total reaction time of 4.6 seconds as the car is moving at a constant speed of 11 m/s. If the driver slams on her brakes and slows down at a rate of -8.2 m/s², what is the stopping distance for the car in this situation?

While the driver is reacting, the car travels at a constant velocity. The first step will be to determine how far the car travels while the driver is reacting:

$$v = \frac{d}{t}$$

$$v = 11 \frac{m}{s}$$

$$t = 4.6 s$$

$$d = ?$$

$$(11 \frac{m}{s})(4.6 s) = d$$

$$d = 50.6 m$$

Unit 2C Acceleration and Kinematic Equations Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.

Next, we must determine how far the car travels while the driver is braking:

$$v_{f}^{2} = v_{i}^{2} + 2ad$$

$$v_{i} = 11 \frac{m}{s} \qquad (0 \frac{m}{s})^{2} = (11 \frac{m}{s})^{2} + 2(-8.2 \frac{m}{s}^{2})d$$

$$v_{f} = 0 \frac{m}{s} \qquad 0 = 121 \frac{m^{2}}{s^{2}} + 2(-8.2 \frac{m}{s}^{2})d$$

$$a = -8.2 \frac{m}{s^{2}} \qquad -121 \frac{m^{2}}{s^{2}} = 2(-8.2 \frac{m}{s^{2}})d$$

$$d = ? \qquad -121 \frac{m^{2}}{s^{2}} = (-16.4 \frac{m}{s})d$$

$$d = 7.4 m$$

The total distance is the sum of the distance the car travels while the driver is reacting plus the distance the car travels as it slows to a stop. The answer is 58 m.