gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.

1. A soccer ball is kicked horizontally off a cliff with an initial speed of $8 \mathrm{~m} / \mathrm{s}$ and lands 16 m from the base of the cliff.

x	y
$v_{x}=8 \mathrm{~m} / \mathrm{s}$	$v_{i_{y}}=0$
$d_{x}=16 \mathrm{~m}$	$a=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$v_{x}=\frac{d_{x}}{t}$	$d_{y}=?$

a. What is the time of flight of the soccer ball?

$$
\begin{aligned}
v_{x} & =\frac{d_{x}}{t} \\
8 \mathrm{~m} / \mathrm{s} & =\frac{16 \mathrm{~m}}{t} \\
t & =\frac{16 \mathrm{~m}}{8 \mathrm{~m} / \mathrm{s}} \\
t & =2 \mathrm{~s}
\end{aligned}
$$

b. What is the height of the cliff?

$$
\begin{aligned}
& d_{y}=v_{i} t+\frac{1}{2} a t^{2} \\
& d_{y}=(0 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~s} \\
& d_{y}=19.6 \mathrm{~m}
\end{aligned}
$$

2. A ball is thrown horizontally from a height of 1 m and lands 5 m away.

x	y
$v_{x}=?$	$v_{i_{y}}=0$
$d_{x}=5 \mathrm{~m}$	$a=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$v_{x}=\frac{d_{x}}{t}$	$d_{y}=1 \mathrm{~m}$

a. What is the time of flight of the ball?

$$
\begin{aligned}
d_{y} & =v_{i_{y}} t+\frac{1}{2} a t^{2} \\
1 m & =(0 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
1 \mathrm{~m} & =\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
0.204 \mathrm{~s}^{2} & =t^{2} \\
t & =0.452 \mathrm{~s}
\end{aligned}
$$

Work each of the following problems. SHOW ALL WORK.
b. What is the initial velocity of the ball?

$$
\begin{aligned}
& v_{x}=\frac{d_{x}}{t} \\
& v_{x}=\frac{5 \mathrm{~m}}{0.452 \mathrm{~s}} \\
& v_{x}=11.06 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. A potato gun is fired horizontally from a height of 1.5 meters with the potato launched at $25 \mathrm{~m} / \mathrm{s}$.

x	y
$v_{x}=25 \mathrm{~m} / \mathrm{s}$	$v_{i_{y}}=0$
$d_{x}=?$	$a=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$v_{x}=\frac{d_{x}}{t}$	$d_{y}=1.5 \mathrm{~m}$

a. What is the time of flight of the potato?

$$
\begin{aligned}
d_{y} & =v_{i_{y}} t+\frac{1}{2} a t^{2} \\
1.5 \mathrm{~m} & =(0 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
1.5 \mathrm{~m} & =\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
0.306 \mathrm{~s}^{2} & =t^{2} \\
t & =0.553 \mathrm{~s}
\end{aligned}
$$

b. How far from the gun will the potato land?

$$
\begin{aligned}
v_{x} & =\frac{d_{x}}{t} \\
25 \mathrm{~m} / \mathrm{s} & =\frac{d_{x}}{0.553 \mathrm{~s}} \\
d_{x} & =13.83 \mathrm{~m}
\end{aligned}
$$

4. A water park is designing a new water slide that finishes with the rider flying horizontally off the bottom of the slide. The slide is designed to end 1.2 m above the water level, and the average rider is estimated to leave the bottom of the slide at $25 \mathrm{~m} / \mathrm{s}$. How far will the rider fly through the air before hitting the water?

\[

\]

gpb.org/physics-motion

Unit 2G

Horizontally Launched Projectiles
Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.
Solve for time of flight first using y-components:

$$
\begin{aligned}
& d_{y}=v_{i_{y}} t+\frac{1}{2} a t^{2} \\
& 1.2 \mathrm{~m}=(0 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
& 1.2 \mathrm{~m}=\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
& 0.245 \mathrm{~s}^{2}=t^{2} \\
& t=0.495 \mathrm{~s} \\
& \text { Next solve for } d_{x}: \\
& v_{x}=\frac{d_{x}}{t} \\
& 25 \mathrm{~m} / \mathrm{s}=\frac{d_{x}}{0.495 \mathrm{~s}} \\
& d_{x}=12.38 \mathrm{~m}
\end{aligned}
$$

5. A marble rolls horizontally off a table that is 0.8 m tall. If the marble lands 0.6 m from the base of the table, what is the initial velocity of the marble?

\[

\]

Solve for time of flight first using y-components:

$$
\begin{aligned}
d_{y} & =v_{i_{y}} t+\frac{1}{2} a t^{2} \\
0.8 \mathrm{~m} & =(0 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
0.8 \mathrm{~m} & =\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
0.163 \mathrm{~s}^{2} & =t^{2} \\
t & =0.404 \mathrm{~s}
\end{aligned}
$$

Next solve for v_{x} :

$$
\begin{aligned}
& v_{x}=\frac{d_{x}}{t} \\
& v_{x}=\frac{0.6 \mathrm{~m}}{0.404 \mathrm{~s}} \\
& v_{x}=1.49 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.

6. The launch velocity of a toy car launcher is determined to be $5 \mathrm{~m} / \mathrm{s}$. If the car is to be launched from a height of 0.5 m , where should a target be placed so that the toy car lands on it?

\[

\]

Solve for time of flight first using y-components:

$$
\begin{aligned}
d_{y} & =v_{i_{y}} t+\frac{1}{2} a t^{2} \\
0.5 \mathrm{~m} & =(0 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
0.5 \mathrm{~m} & =\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
0.102 \mathrm{~s}^{2} & =t^{2} \\
t & =0.319 \mathrm{~s}
\end{aligned}
$$

Next solve for d_{x} :

$$
\begin{aligned}
v_{x} & =\frac{d_{x}}{t} \\
5 \mathrm{~m} / \mathrm{s} & =\frac{d_{x}}{0.319 \mathrm{~s}} \\
d_{x} & =1.60 \mathrm{~m}
\end{aligned}
$$

7. A stunt car traveling at $20 \mathrm{~m} / \mathrm{s}$ flies horizontally off a cliff and lands 39.2 m from the base of the cliff. How tall is the cliff?

$$
\begin{array}{c|c}
\mathrm{x} & \mathrm{y} \\
\hline v_{x}=20 \mathrm{~m} / \mathrm{s} & v_{i_{y}}=0 \\
d_{x}=39.2 \mathrm{~m} & a=g=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
v_{x}=\frac{d_{x}}{t} & d_{y}=?
\end{array}
$$

gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.
Solve for time of flight first using x-components:

$$
\begin{aligned}
v_{x} & =\frac{d_{x}}{t} \\
20 \mathrm{~m} / \mathrm{s} & =\frac{39.2 \mathrm{~m}}{t} \\
t & =\frac{39.2 \mathrm{~m}}{20 \mathrm{~s}} \\
t & =1.96 \mathrm{~s}
\end{aligned}
$$

Next solve for d_{y} :

$$
\begin{aligned}
& d_{y}=v_{i_{y}} t+\frac{1}{2} a t^{2} \\
& d_{y}=(0 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.96 \mathrm{~s})^{2} \\
& d_{y}=18.82 \mathrm{~m}
\end{aligned}
$$

8. A blow dart is fired horizontally from a height of 1.2 meters. If the dart hits a target that is 0.6 m high and 12 m away, what is the initial velocity of the dart?

x	y
$v_{x}=?$	$v_{i_{y}}=0$
$d_{x}=12 \mathrm{~m}$	$a=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$v_{x}=\frac{d_{x}}{t}$	$d_{y}=1.2 \mathrm{~m}$

Solve for time of flight first using y-components:

$$
\begin{aligned}
& d_{y}=v_{i_{y}} t+\frac{1}{2} a t^{2} \\
& 1.2 \mathrm{~m}=(0 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
& 1.2 \mathrm{~m}=\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
& 0.245 \mathrm{~s}^{2}=t^{2} \\
& t=0.495 \mathrm{~s} \\
& \text { Next solve for } v_{X}: \\
& v_{x}=\frac{d_{x}}{t} \\
& v_{x}=\frac{12 \mathrm{~m}}{0.495 \mathrm{~s}} \\
& v_{x}=24.24 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

gpb.org/physics-motion

Unit 2G

Horizontally Launched Projectiles Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.

9. A B-52 bomber jet flies at a horizontal velocity of $286.2 \mathrm{~m} / \mathrm{s}$ and at an altitude of 7500 m above the ground. How far away horizontally should a payload be dropped to land on a target?

\[

\]

Solve for time of flight first using y-components:

$$
\begin{aligned}
d_{y} & =v_{i_{y}} t+\frac{1}{2} a t^{2} \\
7500 \mathrm{~m} & =(0 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right. \\
7500 \mathrm{~m} & =\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
1530.6 \mathrm{~s}^{2} & =t^{2} \\
t & =39.12 \mathrm{~s}
\end{aligned}
$$

Next solve for d_{x} :

$$
\begin{aligned}
v_{x} & =\frac{d_{x}}{t} \\
286.2 \mathrm{~m} / \mathrm{s} & =\frac{d_{x}}{39.12 \mathrm{~s}} \\
d_{x} & =11197 \mathrm{~m}
\end{aligned}
$$

