Force \& NEWTON'S LAWS

Force Equations:

Newton's 2 $\mathbf{2}^{\text {nd }}$ Law: $\quad F_{\text {Net }}=m \cdot a \quad$ or $\quad W=m \cdot g$

Force of Friction: $\quad F_{f}=\mu_{K} \cdot F_{N} \quad$ or $\quad F_{f}=\mu_{S} \cdot F_{N} \quad\left(F_{N}=m \cdot g\right)$
Pressure from Force: $\quad P=\frac{F}{A}$

Conversions:

Force (Weight)

$$
\begin{aligned}
& 1 \mathrm{lb}=4.45 \mathrm{~N} \\
& 1 \mathrm{~N}=.22 \mathrm{lbs}
\end{aligned}
$$

Name

Force
Force (Net)
Force (Weight)
Force (Normal)
Force (Friction)
Force (Applied)
Force (Tension)
Mass
Acceleration
Acceleration (gravity)
Coefficient of Friction (Static)
Coefficient of Friction (Kinetic)
Pressure
Area of contact

Symbol	Unit	Notes
F	N	
$F_{\text {Net }}$	N	
W	N or lbs	
F_{N}	N	
F_{f}	N	
F_{A}	N	
T	N	$-9.8 \mathrm{~m} / \mathrm{s}^{2}$
m	kg	
a	$\mathrm{~m} / \mathrm{s}^{2}$	
g	$\mathrm{~m} / \mathrm{s}^{2}$	
μ_{S}	---	
μ_{K}	---	
P	Pascals $\left(\mathrm{N} / \mathrm{m}^{2}\right)$	
A	$\mathrm{~m}^{2}$	

Unit

N

N or lbs
N
N
N
N
kg
$\mathrm{m} / \mathrm{s}^{2}$
$\mathrm{m} / \mathrm{s}^{2}$

Pascals ($\mathrm{N} / \mathrm{m}^{2}$)
m^{2}
*** Note: 1 Newton $=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2} * * *$

Helpful Kinematics Equations:
$a=\frac{v_{f}-v_{i}}{t} \quad$ or $\quad v_{f}=v_{i}+a \cdot t$
$d=\frac{1}{2} \cdot a \cdot t^{2}$

