Force Equations:

Newton's 2nd Law: $F_{Net} = m \cdot a$ or $W = m \cdot g$

Force of Friction: $F_f = \mu_K \cdot F_N$ or $F_f = \mu_S \cdot F_N$ $(F_N = m \cdot g)$

Pressure from Force: $P = \frac{F}{A}$

Conversions: Force (Weight)

1 lb = 4.45 N 1 N = .22 lbs

<u>Name</u>	<u>Symbol</u>	<u>Unit</u>	<u>Notes</u>
Force	F	N	
Force (Net)	F_{Net}	N	
Force (Weight)	W	N or lbs	
Force (Normal)	F_N	N	
Force (Friction)	F_f	N	
Force (Applied)	$\overset{\circ}{F_A}$	N	
Force (Tension)	T	N	
Mass	m	kg	
Acceleration	a	m/s^2	
Acceleration (gravity)	g	m/s^2	-9.8 m/s^2
Coefficient of Friction (Static)	μ_S		
Coefficient of Friction (Kinetic)	μ_{K}		
Pressure	P	Pascals (N/m ²)	
Area of contact	A	m^2	

*** NOTE: 1 Newton = $1 \text{ kg} \cdot \text{m/s}^2$ ***

Helpful Kinematics Equations:

$$a = \frac{v_f - v_i}{t}$$
 or $v_f = v_i + a \cdot t$
$$d = \frac{1}{2} \cdot a \cdot t^2$$