gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.

1. A $1,200 \mathrm{~kg}$ car travels at $20 \mathrm{~m} / \mathrm{s}$. What is its momentum?

$$
\begin{aligned}
& p=m v \\
& p=(1200 \mathrm{~kg})(20 \mathrm{~m} / \mathrm{s}) \\
& p=24000 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

2. If the car in the previous question slows to a stop, what is its final momentum?

If the final velocity is zero, the final momentum is zero.
3. What is the change in momentum of the car in the previous questions?

$$
\begin{aligned}
& \Delta p=p_{f}-p_{i} \\
& \Delta p=0-24000 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \\
& \Delta p=-24000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

4. If the car slows down in $\mathbf{5}$ seconds, what force does the car experience in braking?

$$
\begin{aligned}
\Delta p & =F \Delta t \\
-24000 \mathrm{~kg} / \mathrm{m} & =F(5 \mathrm{~s}) \\
F & =-4800 \mathrm{~N}
\end{aligned}
$$

5. While catching an egg, the receiver "gives" with her hands and arms, making the stopping time of the egg about seven times longer than if it were caught stiff-armed. By what factor does the force encountered by the egg change?

> If the change in momentum is the same, but the stopping time
is seven times longer, the force exerted will be seven times less.
gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.
6. What is the momentum in $\mathrm{kg} \mathrm{m} / \mathrm{s}$ of a $\mathbf{6 2} \mathrm{g}$ golf ball traveling at $73 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
m & =62 \mathrm{~g}=0.062 \mathrm{~kg} \\
v & =73 \mathrm{~m} / \mathrm{s} \\
p & =m v \\
p & =(0.062 \mathrm{~kg})(73 \mathrm{~m} / \mathrm{s}) \\
p & =4.53 \mathrm{kgm} / \mathrm{s}
\end{aligned}
$$

7. If the impact of the golf club on the ball in the previous question occurs over a time of 2×10^{-3} seconds, what force does the ball experience to accelerate from rest to $73 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
p_{i} & =m v_{i}=(0.062 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})=0 \\
p_{f} & =m v_{f}=(0.062 \mathrm{~kg})(73 \mathrm{~m} / \mathrm{s})=4.53 \mathrm{~kg} / \mathrm{s} / \mathrm{s} \\
\Delta p & =p_{f}-p_{i} \\
\Delta p & =4.53 \mathrm{~kg}^{\mathrm{m}} / \mathrm{s}-0 \\
\Delta p & =4.53 \mathrm{~kg} / \mathrm{s} \\
\Delta p & =F t \\
4.53 \mathrm{~kg} / \mathrm{s} / \mathrm{s} & =F(0.002 \mathrm{~s}) \\
F & =2263 \mathrm{~N}
\end{aligned}
$$

8. How long must a tow truck apply a force of 550 N to increase the speed of a $1,200 \mathrm{~kg}$ car at rest to $\mathbf{2 ~ m} / \mathrm{s}$?

$$
\begin{aligned}
p_{i} & =m v_{i}=(1200 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})=0 \\
p_{f} & =m v_{f}=(1200 \mathrm{~kg})(2 \mathrm{~m} / \mathrm{s})=2400 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \\
\Delta p & =p_{f}-p_{i} \\
\Delta p & =2400 \mathrm{~kg} / \mathrm{s}-0 \\
\Delta p & =2400 \mathrm{~kg} / \mathrm{s} \\
\Delta p & =F t \\
2400 \mathrm{kgm} / \mathrm{s} & =(550 \mathrm{~N}) t \\
t & =4.36 \mathrm{~s}
\end{aligned}
$$

