

Unit 4F Work-Energy Theorem Note-Taking Guide TEACHER

After watching the video segment, write down key points, main ideas, and big questions.

Objective(s):

- Calculate the work done on an object and its change in energy.
- Apply the work-energy theorem to an object that experiences a net external force.

Notes:

During the video segment, use words, phrases, or drawings to take notes.

Summary:

After watching the video segment, write at least three sentences explaining what you learned. You may ask yourself: "If I was going to explain this to someone else, what would I say?"

Unit 4F Work-Energy Theorem Questions to Consider TEACHER

Answer the following.

1.	Define the physics quantity of work in your own words.
	Work is done when a force causes an object to move or to be displaced.
2.	When work is done on an object, it changes the object's
3.	What is the unit of work?
	Work is measured in joules. A joule is a newton times a meter.
4.	What is the unit of energy?
	Energy is also measured in joules.
5.	How is work related to force and displacement?
	Work equals force times displacement (W = Fd).
6.	How is work related to kinetic energy?
	Work also equals the change in an object's kinetic energy.
	$W = \triangle KE$
	$W = KE_{t} - KE_{i}$
	$W = \frac{1}{2} m v_{i}^{2} - \frac{1}{2} m v_{i}^{2}$
7.	How does friction affect the kinetic energy of an object?
	Friction reduces the kinetic energy of an object.
8.	How does the direction of friction compare to an object's direction of motion?
	Friction acts opposite to an object's direction of motion.
9.	Based on the previous two questions, does friction do positive or negative work? What does this mean for the energy of an object?
	Friction does negative work by acting opposite to an object's
	direction of motion, thereby reducing the object's energy.