

Unit 4I Power

gpb.org/physics-motion

Note-Taking Guide TEACHER

After watching the video segment, write down key points, main ideas, and big questions.

Objective(s):

- Understand the influence of work, energy change, and time on the amount of power exerted.
- Calculate the amount of power exerted by determining the rate at which work is done on an object or energy is converted by an object.

_	
	Motoc
	Notes

During the video segment, use words, phrases, or drawings to take notes.

After watching the video segment, write at least three sentences explaining what you learned.
You may ask yourself: "If I was going to explain this to someone else, what would I say?"

Unit 4I Power

Questions to Consider TEACHER

Questions to consider:

W	Questions to consider.	
1.	Define power in your own words.	
	Power is the rate at which work is done or energy is transferred from one form to another.	
2.	Power is measured in what unit? What base units make up this unit?	
	Power is measured in watts, which are equal to joules per second.	
3.	In what unit is power measured in the United States? How is this unit relative to the unit discussed in the previous question?	
	Power is also measured in units of horsepower, and one horsepower equals 746 watts (1 hp = 746 W).	
4.	What is the equation for power in terms of work and time?	
	$P = \frac{W}{t}$	
5.	What is an equation for power in terms of force and velocity?	
	P = Fv	
6.	If the amount of work done remains constant but occurs over less time, how does this affect the amount of power exerted? Explain.	
	More power must be exerted to generate the same amount of work over less time.	
7.	If the force applied to an object remains constant, is more power needed for the object to move faster? Explain.	
	In order for an object to move faster while experiencing a constant force,	
	the power exerted on the object must increase. This is because more work is	
	done on the object per second as the distance covered each second increases.	

Unit 41 Notes and Questions Teacher

A 60 W bulb puts off 60 J of energy each second, while a 45 W bulb puts off 45 J of energy each second.

8. Explain how a 45 and 60 watt bulb differ in terms of energy output.