PHYSICS
INMOTION》》
gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.

1. A Chevy Camaro engine exerts 650 hp to move the car. How many watts of power does the engine exert?

$$
\frac{650 h p}{1}\left(\frac{746 W}{1 h p}\right)=484900 W
$$

2. If 400 J of work is done on an object in $\mathbf{8}$ seconds, how much power does the object experience?

$$
P=\frac{W}{t}=\frac{400 \mathrm{~J}}{8 \mathrm{~s}}=50 \mathrm{~W}
$$

3. If a riding lawnmower engine exerts 19 hp in one minute to move the mower, how much work is done?

$$
\begin{aligned}
\frac{19 h p}{1}\left(\frac{746 W}{1 h p}\right) & =14174 W \\
P & =\frac{W}{t} \\
14174 W & =\frac{W}{60 \mathrm{~s}} \\
W & =850440 \mathrm{~J}
\end{aligned}
$$

4. If a 75 N force is applied to a box, moving it $\mathbf{4} \mathrm{m}$ in $\mathbf{6}$ seconds, how much power does the force exert?

$$
\begin{aligned}
& P=\frac{W}{t} \\
& P=\frac{F d}{t} \\
& P=\frac{(75 \mathrm{~N})(4 \mathrm{~m})}{6 \mathrm{~s}} \\
& P=50 \mathrm{~W}
\end{aligned}
$$

Work each of the following problems. SHOW ALL WORK.
5. If a constant force of 20 N is applied to a cart, how much power does the force exert on the cart when it reaches a speed of $4 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
P & =\frac{W}{t} \\
P & =\frac{F d}{t} \\
P & =F v \\
P & =(20 \mathrm{~N})(4 \mathrm{~m} / \mathrm{s}) \\
P & =80 \mathrm{~W}
\end{aligned}
$$

6. If a $\mathbf{2} \mathbf{k g}$ object is falling at $3 \mathrm{~m} / \mathrm{s}$, at what rate is gravity working on the object?

$$
\begin{aligned}
P & =\frac{W}{t} \\
P & =\frac{F d}{t} \\
P & =F V \\
P & =(m g) v \\
P & =(2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3 \mathrm{~m} / \mathrm{s}) \\
P & =58.8 \mathrm{~W}
\end{aligned}
$$

7. A $1,200 \mathrm{~kg}$ car accelerates from rest to $27 \mathrm{~m} / \mathrm{s}$ in $\mathbf{6}$ seconds. How much power does the engine exert on the car during this acceleration?

$$
\begin{aligned}
& P=\frac{W}{t} \\
& P=\frac{\Delta K E}{t} \\
& P=\frac{K E_{f}-K E_{i}}{t} \\
& P=\frac{\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}}{t} \\
& P=\frac{\frac{1}{2}(1200 \mathrm{~kg})(27 \mathrm{~m} / \mathrm{s})^{2}-\frac{1}{2}(1200 \mathrm{~kg})(0)^{2}}{6 \mathrm{~s}} \\
& P=\frac{437400 \mathrm{~J}}{6 \mathrm{~s}} \\
& P=72900 \mathrm{~W}
\end{aligned}
$$

gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.
8. A 400 hp engine in a $1,600 \mathrm{~kg}$ car applies maximum force for 2 seconds to accelerate the car onto the interstate. If the car moves at $\mathbf{8} / \mathrm{s}$ before accelerating, what is its speed after the $\mathbf{2}$ seconds of acceleration?

$$
\begin{aligned}
\frac{400 \mathrm{hp}}{1}\left(\frac{746 \mathrm{~W}}{1 \mathrm{hp}}\right) & =298400 \mathrm{~W} \\
P & =\frac{W}{t} \\
P & =\frac{\Delta K E}{t} \\
P & =\frac{K E_{f}-K E_{i}}{t} \\
P & =\frac{\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}}{t} \\
298400 W & =\frac{\frac{1}{2}(1600 \mathrm{~kg}) v_{f}^{2}-\frac{1}{2}(1600 \mathrm{~kg})(8 \mathrm{~m} / \mathrm{s})^{2}}{2 \mathrm{~s}} \\
298400 \mathrm{~W} & =\frac{\frac{1}{2}(1600 \mathrm{~kg}) v_{f}^{2}-51200 \mathrm{~J}}{2 \mathrm{~s}} \\
596800 \mathrm{~J} & =\frac{1}{2}(1600 \mathrm{~kg}) v_{f}^{2}-51200 \mathrm{~J} \\
648000 \mathrm{~J} & =(800 \mathrm{~kg}) v_{f}^{2} \\
810 \mathrm{~m}^{2} / \mathrm{s}^{2} & =v_{f}^{2} \\
v_{f} & =28.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

