gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.

1. Using the right-hand rule, in which direction will the magnetic force act on a positively charged particle that is moving to the left and experiencing a magnetic field straight ahead?

The magnetic force will act straight down on the positively charged particle.
2. Using the right-hand rule, in which direction will the magnetic force act on a negatively charged particle that is moving to the left and experiencing a magnetic field straight down?

The magnetic force will act straight ahead on the negatively charged particle.
3. Two charged particles with opposite signs but the same magnitude of charge enter a magnetic field that is perpendicular to their direction of motion. How will the motion of the two particles differ when they enter the magnetic field?

Because the particles have opposite charges,

they will be deflected in opposite directions when they encounter the magnetic field.
4. An electron that is moving to the right experiences a magnetic field of 2.5 T directed upward. If the force on the electron is $2.4 \times 10^{-12} \mathrm{~N}$, what is the speed of the electron?

$$
\begin{aligned}
B & =2.5 \mathrm{~T} \\
F_{B} & =2.4 \times 10^{-12} \mathrm{~N} \\
q & =1.6 \times 10^{-19} \mathrm{C} \\
F_{B} & =q v B \\
\left(2.4 \times 10^{-12} \mathrm{~N}\right) & =\left(1.6 \times 10^{-19} \mathrm{C}\right) v(2.5 \mathrm{~T}) \\
v & =6.0 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

5. A proton that is moving north at $7.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$ encounters a uniform magnetic field of 4.5 T directed east. What are the magnitude and direction of the force acting on the proton?

$$
\begin{aligned}
& B=4.5 \mathrm{~T} \\
& v=7.5 \times 10^{7} \mathrm{~m} / \mathrm{s} \\
& q=1.6 \times 10^{-19} \mathrm{C} \\
& F_{B}=q v B \\
& F_{B}=\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(7.5 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)(4.5 \mathrm{~T}) \\
& F_{B}=5.4 \times 10^{-11} \mathrm{~N} \\
& \text { The direction of the force is straight down. }
\end{aligned}
$$

gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.
6. A particle moving at $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$ experiences a force of $1.2 \times 10^{-10} \mathrm{~N}$ when it encounters a magnetic field of 3 T . What is the magnitude of the charge on the particle?

$$
\begin{aligned}
B & =3.0 T \\
v & =3.6 \times 10^{6} \mathrm{~m} / \mathrm{s} \\
F_{B} & =1.2 \times 10^{-10} \mathrm{~N} \\
F_{B} & =q v B \\
\left(1.2 \times 10^{-10} \mathrm{~N}\right) & =q\left(3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)(3.0 \mathrm{~T}) \\
q & =1.11 \times 10^{-17} \mathrm{C}
\end{aligned}
$$

7. A proton moving to the left at $4.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ experiences a force of $1.4 \times 10^{-10} \mathrm{~N}$ downward. What are the direction and magnitude of the magnetic field acting on the proton?

$$
\begin{aligned}
q & =1.6 \times 10^{-19} \mathrm{~m} / \mathrm{s} \\
v & =4.2 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
F_{B} & =1.4 \times 10^{-10} \mathrm{~N} \\
F_{B} & =q v B \\
\left(1.4 \times 10^{-10} \mathrm{~N}\right) & =\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(4.2 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) B \\
B & =2.08 \mathrm{~T}
\end{aligned}
$$

The direction of the magnetic field is straight ahead.
8. An electron moves to the west at $1.2 \times 10^{6} \mathrm{~m} / \mathrm{s}$ and experiences a magnetic force of $6.0 \times 10^{-13} \mathrm{~N}$ upward. What are the magnitude and direction of the magnetic field acting on the electron?

$$
\begin{aligned}
q & =1.6 \times 10^{-19} \mathrm{C} \\
v & =1.2 \times 10^{6} \mathrm{~m} / \mathrm{s} \\
F_{B} & =6.0 \times 10^{-13} \mathrm{~N} \\
F_{B} & =q v B \\
\left(6.0 \times 10^{-13} \mathrm{~N}\right) & =\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(1.2 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) B \\
B & =3.13 \mathrm{~T}
\end{aligned}
$$

The direction of the magnetic field is to the north.

