

Unit 5K Generators & Motors Note-Taking Guide TEACHER

After watching the video segment, write down key points, main ideas, and big questions.

Objective(s):

• Compare and contrast motors and generators, specifically how each device works and how both devices use electromagnetic induction.

Notes:	During the video segment, use words, phrases, or
	drawings to take notes.

Summary:

After watching the video segment, write at least three sentences explaining what you learned.
You may ask yourself: "If I was going to explain this to someone else, what would I say?"

Unit 5K Generators & Motors Questions to Consider TEACHER

Answer the following.

1.	How do motors and generators differ?
	Generators take mechanical energy and turn it into electricity,
	and motors take electricity and turn it into mechanical energy.
2.	How do motors and engines differ?
	Motors use electromagnetic induction to work, and engines use some type of chemical fuel to work.
3.	What is created when there is relative motion between a wire and a magnetic field?
	Relative motion between a wire and a magnetic field is called electromagnetic induction,
	which creates an electromotive force (emf) that causes current to flow.
4.	What is the result of the magnetic field acting on a wire in a direct current motor?
	When a magnetic field acts on a wire, it causes the rotor to spin.
5.	What is needed in both direct current and induction motors to turn the rotor?
	There must be a changing magnetic field to turn the rotor of any motor.
6.	What is the easiest way to increase the magnetic force acting on the rotor of an induction motor?
	Adding more coils of wire increases the length of the wire,
	subsequently increasing the magnetic force created by the current moving through the wire.
7.	What turns the turbines in the generators of nuclear, coal, and natural gas power plants?
	In these types of power plants, steam is used to turn the turbines and generate alternating current.
8.	What kind of current do power plants generate?
	Power plants generate alternating current.
9.	The purpose of transformers is to reduce the generated at the power plant to a more manageable level for home usage.