gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.

1. A child sitting at the end of a dock notices that 8 wavelengths pass by in 4 seconds. What is the frequency of the waves passing the dock?

$$
\text { frequency }=\frac{\# \text { wavelengths }}{\text { total time }}=\frac{8 \lambda}{4 \mathrm{~s}}=\frac{2 \lambda}{1 \mathrm{~s}}=2 \mathrm{~Hz}
$$

2. What is the period of the waves from the previous question?

$$
T=\frac{1}{f}=\frac{1}{2 H z}=0.5 \mathrm{~s}
$$

3. Using the diagram below, determine the wavelength and amplitude of the wave:

The wavelength is 4 m , and the amplitude is 2 m .
4. A pendulum oscillates 12 times in $\mathbf{4}$ seconds.
a. What is the frequency of the oscillations?

$$
\text { frequency }=\frac{\# \text { oscillations }}{\text { total time }}=\frac{12 \text { osc }}{4 \mathrm{~s}}=\frac{3 \text { osc }}{1 \mathrm{~s}}=3 \mathrm{~Hz}
$$

b. What is the period of the oscillations?

$$
T=\frac{1}{f}=\frac{1}{3 H z}=0.33 \mathrm{~s}
$$

gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.
c. What is the length of the pendulum?

$$
\begin{aligned}
T & =2 \pi \sqrt{\frac{l}{g}} \\
0.33 \mathrm{~s} & =2 \pi \sqrt{\frac{l}{9.8 \mathrm{~m} / \mathrm{s}^{2}}} \\
0.0525 \mathrm{~s} & =\sqrt{\frac{l}{9.8 \mathrm{~m} / \mathrm{s}^{2}}} \\
0.00276 \mathrm{~s}^{2} & =\frac{l}{9.8 \mathrm{~m} / \mathrm{s}^{2}} \\
l & =0.027 \mathrm{~m}
\end{aligned}
$$

5. A pendulum is $\mathbf{0 . 2 5} \mathbf{m}$ long. What is the frequency of its oscillations?

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{l}{g}} \\
& T=2 \pi \sqrt{\frac{0.25 \mathrm{~m}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}} \\
& T=2 \pi \sqrt{0.0255 \mathrm{~s}^{2}} \\
& T=2 \pi(0.16 \mathrm{~s}) \\
& T=1.00 \mathrm{~s} \\
& f=\frac{1}{T}=\frac{1}{1 \mathrm{~s}}=1 \mathrm{~Hz}
\end{aligned}
$$

6. A water wave has a frequency of 2 Hz , and there are 3 m between each crest on the wave. How fast is the wave moving?

$$
\begin{aligned}
f & =2 \mathrm{~Hz} \\
\lambda & =3 \mathrm{~m} \\
v & =\lambda f \\
v & =(3 \mathrm{~m})(2 \mathrm{~Hz}) \\
v & =6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Work each of the following problems. SHOW ALL WORK.
7. Sound waves travel at roughly $340 \mathrm{~m} / \mathrm{s}$ at room temperature. The minimum hearing range of a human is 20

Hz . What is the wavelength of a sound wave?

$$
\begin{aligned}
v & =340 \mathrm{~m} / \mathrm{s} \\
f & =20 \mathrm{~Hz} \\
v & =\lambda f \\
340 \mathrm{~m} / \mathrm{s} & =\lambda(20 \mathrm{~Hz}) \\
\lambda & =17 \mathrm{~m}
\end{aligned}
$$

8. If a spring requires 20 N to be compressed a distance of 10 cm , what is its spring constant (N / m)?

$$
\begin{aligned}
F & =20 \mathrm{~N} \\
x & =10 \mathrm{~cm}=0.10 \mathrm{~m} \\
F & =k x \\
20 \mathrm{~N} & =k(0.10 \mathrm{~m}) \\
k & =200 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

9. How much potential energy is stored in the spring from the previous question?

$$
\begin{aligned}
k= & 200 \mathrm{~N} / \mathrm{m} \\
x & =0.10 \mathrm{~m} \\
P E_{s} & =\frac{1}{2} k x^{2} \\
P E_{s} & =\frac{1}{2}(200 \mathrm{~N} / \mathrm{m})(0.10 \mathrm{~m})^{2} \\
P E_{s} & =1 \mathrm{~J}
\end{aligned}
$$

