gpb.org/physics-motion

Unit 6C
The Doppler Effect
Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.

1. A siren emits a frequency of $2,000 \mathrm{~Hz}$. If an observer hears a frequency of $1,800 \mathrm{~Hz}$, is the siren moving toward or away from him?

The siren is moving away because the observed frequency is less than the emitted frequency.
2. A car horn emits a frequency of 400 Hz in $20^{\circ} \mathrm{C}$ air, at which temperature the speed of sound is $343 \mathrm{~m} / \mathrm{s}$. If the car moves toward a stationary observer at $20 \mathrm{~m} / \mathrm{s}$, what is the observed frequency of the horn?

$$
\begin{gathered}
f_{\text {obs }}=f_{\text {source }}\left(\frac{v \pm v_{\text {obs }}}{v \pm v_{\text {source }}}\right) \\
v=\frac{v_{\text {source }}=}{400 \mathrm{~Hz}} \begin{array}{l}
343 \mathrm{~m} / \mathrm{s} \\
f_{\text {source }}=\frac{0 \mathrm{~m} / \mathrm{s}}{} \\
f_{\text {obs }}=(400 \mathrm{~Hz})\left(\frac{343 \mathrm{~m} / \mathrm{s}+0}{343 \mathrm{~m} / \mathrm{s}-20 \mathrm{~m} / \mathrm{s}}\right) \\
f_{\text {obs }}=(400 \mathrm{~Hz})\left(\frac{343 \mathrm{~s} / \mathrm{s}}{323 \mathrm{~m} / \mathrm{s}}\right) \\
f_{\text {obs }}=(400 \mathrm{~Hz})(1.06) \\
f_{\text {obs }}=424 \mathrm{~Hz}
\end{array}
\end{gathered}
$$

3. The frequency of a tornado siren is $1,000 \mathrm{~Hz}$. If a cyclist moves toward the siren at $10 \mathrm{~m} / \mathrm{s}$ in $15^{\circ} \mathrm{C}$ air, at which temperature the speed of sound is $340 \mathrm{~m} / \mathrm{s}$, what frequency does the cyclist observe?

$$
f_{\text {obs }}=f_{\text {source }}\left(\frac{v \pm v_{\text {obs }}}{v \pm v_{\text {source }}}\right)
$$

$f_{\text {source }}$	$=\frac{1,000 \mathrm{~Hz}}{} \quad v_{\text {obs }}=\frac{10 \mathrm{~m} / \mathrm{s}}{} \quad$$340 \mathrm{~m} / \mathrm{s}$
v	$=\frac{v_{\text {source }}}{}=\frac{0 \mathrm{~m} / \mathrm{s}}{}$

$$
\begin{aligned}
& f_{\text {obs }}=(1000 \mathrm{~Hz})\left(\frac{340 \mathrm{~m} / \mathrm{s}+10 \mathrm{~m} / \mathrm{s}}{340 \mathrm{~m} / \mathrm{s}-0}\right) \\
& f_{\text {obs }}=(1000 \mathrm{~Hz})\left(\frac{350 \mathrm{~m} / \mathrm{s}}{340 \mathrm{~m} / \mathrm{s}}\right) \\
& f_{\text {obs }}=(1000 \mathrm{~Hz})(1.03) \\
& f_{\text {obs }}=1030 \mathrm{~Hz}
\end{aligned}
$$

gpb.org/physics-motion

Unit 6C
The Doppler Effect
Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.
4. A tug boat horn emits a frequency of 250 Hz in $18^{\circ} \mathrm{C}$ air, at which temperature the speed of sound is $342 \mathrm{~m} / \mathrm{s}$. If the tug boat moves away from a stationary observer at $15 \mathrm{~m} / \mathrm{s}$, what is the observed frequency of the horn?

$$
\begin{gathered}
f_{\text {obs }}=f_{\text {source }}\left(\frac{v \pm v_{\text {obs }}}{v \pm v_{\text {source }}}\right) \\
f_{\text {source }}=\frac{250 \mathrm{~Hz}}{} \begin{array}{l}
342 \mathrm{~m} / \mathrm{s} \\
v_{\text {obs }}=\frac{0 \mathrm{~m} / \mathrm{s}}{} \\
f_{\text {obs }}=(250 \mathrm{~Hz})\left(\frac{342 \mathrm{~m} / \mathrm{s}+0}{342 \mathrm{~m} / \mathrm{s}+15 \mathrm{~m} / \mathrm{s}}\right) \\
f_{\text {obs }}=(250 \mathrm{~Hz})\left(\frac{342 \mathrm{~m} / \mathrm{s}}{357 \mathrm{~m} / \mathrm{s}}\right) \\
f_{\text {obs }}=(250 \mathrm{~Hz})(0.96) \\
f_{\text {obs }}=240 \mathrm{~Hz}
\end{array}
\end{gathered}
$$

5. A jogger runs at $9 \mathrm{~m} / \mathrm{s}$ and is trailed by a bumblebee moving at $5 \mathrm{~m} / \mathrm{s}$ and buzzing at a frequency of 270 Hz . What frequency does the jogger hear if the speed of sound in the air is $336 \mathrm{~m} / \mathrm{s}$?

$$
\begin{gathered}
f_{\text {obs }}=f_{\text {source }}\left(\frac{v \pm v_{\text {obs }}}{V \pm v_{\text {source }}}\right) \\
f_{\text {source }}=\frac{270 \mathrm{~Hz}}{v=\frac{v_{\text {obs }}}{}=\frac{9 \mathrm{~m} / \mathrm{s}}{336 \mathrm{~m} / \mathrm{s}}} \begin{array}{c}
v_{\text {source }}=\frac{5 \mathrm{~m} / \mathrm{s}}{} \\
f_{\text {obs }}=(270 \mathrm{~Hz})\left(\frac{336 \mathrm{~m} / \mathrm{s}-9 \mathrm{~m} / \mathrm{s}}{336 \mathrm{~m} / \mathrm{s}-5 \mathrm{~m} / \mathrm{s}}\right) \\
f_{\text {obs }}=(270 \mathrm{~Hz})\left(\frac{327 \mathrm{~m} / \mathrm{s}}{331 \mathrm{~m} / \mathrm{s}}\right) \\
f_{\text {obs }}=(270 \mathrm{~Hz})(0.99) \\
f_{\text {obs }}=267 \mathrm{~Hz}
\end{array}
\end{gathered}
$$

