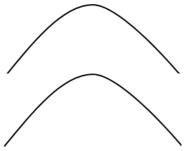
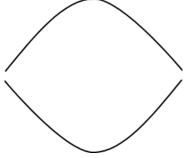


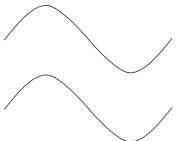
Unit 6D

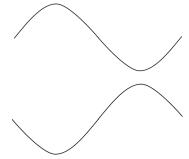

Name:

Sound Diffraction and Interference Practice Problems


Date:

Work each of the following problems. SHOW ALL WORK.

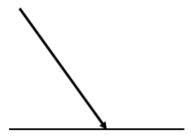

1. Draw the amplitude of the resulting wave pulse that is created when the two pulses below overlap with each other:


2. Draw the amplitude of the resulting wave pulse that is created when the two pulses below overlap with each other:

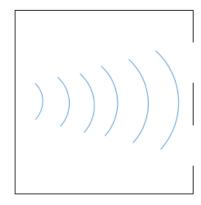
3. Draw the amplitude of the resulting wave pulse that is created when the two pulses below overlap with each other:

4. Draw the amplitude of the resulting wave pulse that is created when the two pulses below overlap with each other:

Sound Diffraction and Interference Practice Problems


Date:

Name:


Work eac	h of the f	ollowina	problems.	SHOW	ALL \	WORK.
Troint out			PIODICITION			

Unit 6D

5. Complete the diagram below by drawing the angle at which the sound wave will bounce off the boundary.

6. Draw the double-slit diffraction pattern for the waves illustrated in the diagram below:

7. What is the frequency of the beats that form when two waves, one with a frequency of 452 Hz and one with a frequency of 448 Hz, move in the same direction?

8. A student hears a beat frequency of 3 Hz when two tuning forks are struck. One of the tuning forks has a frequency of 512 Hz. What are the two possible frequencies of the other tuning fork?