1. Draw the first four harmonics of standing waves on a string.
2. If the length of the string in question one is $\mathbf{2} \mathbf{m}$, what are the wavelengths of the first four harmonics?
3. Choose the possible wavelengths of standing waves on a string that is $\mathbf{4} \mathbf{~ m}$ long. State which harmonic corresponds to each possible wavelength.
a. 1 m \qquad
b. 2 m \qquad
c. 4 m \qquad
d. 6 m \qquad
e. 8 m \qquad
f. 16 m \qquad
4. Draw the first four harmonics of standing waves in an open-ended tube.
5. If the length of the tube in question four is 1 m , what are the wavelengths of the first four harmonics?
6. Choose the possible wavelengths of standing waves in an open-ended tube that is $\mathbf{3} \mathbf{~ m}$ long. State which harmonic corresponds to each possible wavelength.
a. 1 m \qquad
b. 1.5 m \qquad
c. 2 m \qquad
d. 3 m \qquad
e. 5 m \qquad
f. 6 m \qquad
7. Draw the first three harmonics of standing waves in a closed-ended tube $(n=1,3,5)$.
8. If the length of the tube in question seven is $\mathbf{2} \mathbf{m}$, what are the wavelengths of the first three harmonics?
9. Choose the possible wavelengths of standing waves in a closed-ended tube that is 15 m long. State which harmonic corresponds to each possible wavelength.
a. 10 m \qquad
b. 12 m \qquad
c. 20 m \qquad
d. 30 m \qquad
e. 40 m \qquad
f. 60 m \qquad
