gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.

1. Which would cause a greater decrease in the intensity of a polarized light ray: a filter oriented at 15° or a filter oriented at 75° to the path of the light?

The filter oriented at 75° would cause a greater decrease in
intensity because the cosine of 75° is smaller than the cosine of 15°.
2. A polarized ray with an intensity of $15 \mathrm{~W} / \mathrm{m}^{2}$ encounters a filter oriented at 60° to its path. What is the resulting intensity of the light ray?

$$
\begin{aligned}
& I_{\text {outgoing }}=I_{\text {incoming }} \cos ^{2} \Theta \\
& I_{\text {outgoing }}=\left(15 \mathrm{w} / \mathrm{m}^{2}\right) \cos ^{2}\left(60^{\circ}\right) \\
& I_{\text {outgoing }}=\left(15 \mathrm{w} / \mathrm{m}^{2}\right)(0.5)^{2} \\
& I_{\text {outgoing }}=\left(15 \mathrm{w} / \mathrm{m}^{2}\right)(0.25) \\
& I_{\text {outgoing }}=3.75 \mathrm{w} / \mathrm{m}^{2}
\end{aligned}
$$

3. A polarized ray with an intensity of $10 \mathrm{~W} / \mathrm{m}^{2}$ encounters a filter oriented at 30° to its path. What is the resulting intensity of the light ray?

$$
\begin{aligned}
& I_{\text {outgoing }}=I_{\text {incoming }} \cos ^{2} \Theta \\
& I_{\text {outgoing }}=\left(10 \mathrm{w} / \mathrm{m}^{2}\right) \cos ^{2}\left(30^{\circ}\right) \\
& I_{\text {outgoing }}=\left(10 \mathrm{w} / \mathrm{m}^{2}\right)(0.866)^{2} \\
& I_{\text {outgoing }}=\left(10 \mathrm{w} / \mathrm{m}^{2}\right)(0.75) \\
& I_{\text {outgoing }}=7.5 \mathrm{w} / \mathrm{m}^{2}
\end{aligned}
$$

4. At what angle is a polarization filter oriented relative to the motion of a polarized ray if it reduces the intensity of the light ray to 60% of its initial level?

$$
\begin{aligned}
I_{\text {outgoing }} & =I_{\text {incoming }} \cos ^{2} \Theta \\
(0.60) \operatorname{lin}_{\text {incoming }} & =I_{\text {incoming }} \cos ^{2} \Theta \\
\sqrt{0.60} & =\sqrt{\cos ^{2} \Theta} \\
0.775 & =\cos \Theta \\
\cos ^{-1}(0.775) & =\cos ^{-1}(\cos \Theta) \\
\Theta & =39.2^{\circ}
\end{aligned}
$$

gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.
5. An unpolarized light ray has an intensity of $12 \mathrm{~W} / \mathrm{m}^{2}$.
a. What is the intensity of the light ray after it passes through a horizontally oriented filter?

When unpolarized light passes through a horizonally oriented filter,
the intensity is reduced by half, so the outgoing intensity is $6 \mathrm{~W} / \mathrm{m}^{2}$.
b. What is the intensity of the light ray after it passes through a second filter that is oriented at a 45° angle to the first filter?

$$
\begin{aligned}
& I_{\text {outgoing }}=I_{\text {incoming }} \cos ^{2} \Theta \\
& I_{\text {outgoing }}=\left(6 \mathrm{~W} / \mathrm{m}^{2}\right)^{2} \cos ^{2}\left(45^{\circ}\right) \\
& I_{\text {outgoing }}=\left(6 \mathrm{w} / \mathrm{m}^{2}\right)(0.707)^{2} \\
& I_{\text {outgoing }}=\left(6 \mathrm{w} / \mathrm{m}^{2}\right)(0.50) \\
& I_{\text {outgoing }}=3 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

c. What is the intensity of the light ray after it passes through a third filter that is vertically oriented?

A filter is vertically oriented at 45° to polarized light moving at a 45° angle:

$$
\begin{aligned}
& I_{\text {outgoing }}=I_{\text {incoming }} \cos ^{2} \Theta \\
& \cos _{\text {outgoing }}=\left(3 \mathrm{~W} / \mathrm{m}^{2}\right) \cos ^{2}\left(45^{\circ}\right) \\
& I_{\text {outgoing }}=\left(3 \mathrm{w} / \mathrm{m}^{2}\right)(0.707)^{2} \\
& I_{\text {outgoing }}=\left(3 \mathrm{w} / \mathrm{m}^{2}\right)(0.50) \\
& I_{\text {outgoing }}=1.5 \mathrm{w} / \mathrm{m}^{2}
\end{aligned}
$$

