Work each of the following problems. SHOW ALL WORK.

1. How far from above the center point of the screen will the first mimimum be when red light, with a wavelength of $7.0 \times 10^{-7} \mathrm{~m}$ that passes through a single slit that is $2.0 \times 10^{-5} \mathrm{~m}$ that is 0.50 m from the screen?

$$
\begin{aligned}
& m=1 \\
& \lambda=7.0 \times 10^{-7} \mathrm{~m} \\
& a= 2.0 \times 10^{-5} \mathrm{~m} \\
& L= 0.50 \mathrm{~m} \\
& y=\frac{m \lambda L}{a} \\
& y=\frac{(1)\left(7.0 \times 10^{-7} \mathrm{~m}\right)(0.50 \mathrm{~m})}{\left(2.0 \times 10^{-5} \mathrm{~m}\right)} \\
& y=0.0175 \mathrm{~m}
\end{aligned}
$$

2. The first minimum line is $5.0 \times 10^{-4} \mathrm{~m}$ above the center of the screen when blue light, with a wavelength of $4.5 \times 10^{-7} \mathrm{~m}$, is shown upon a single slit that is $4.0 \times 10^{-4} \mathrm{~m}$ wide. How far is the screen from the slit?

$$
\begin{aligned}
m & =1 \\
\lambda & =4.5 \times 10^{-7} \mathrm{~m} \\
a & =4.0 \times 10^{-4} \mathrm{~m} \\
y & =5.0 \times 10^{-4} \mathrm{~m} \\
& y=\frac{m \lambda L}{a}
\end{aligned}
$$

$$
\begin{aligned}
\left(5.0 \times 10^{-4} \mathrm{~m}\right) & =\frac{(1)\left(4.5 \times 10^{-7} \mathrm{~m}\right) \mathrm{L}}{\left(4.0 \times 10^{-4} \mathrm{~m}\right)} \\
L & =0.44 \mathrm{~m}
\end{aligned}
$$

3. What is the wavelength of light that is shown upon a single slit that is $6.0 \times 10^{-5} \mathrm{~m}$ wide and is $1.0 \times 10^{-1} \mathrm{~m}$ from a screen on which the third minimum is $2.0 \times 10^{-3} \mathrm{~m}$ below the central maximum?

$$
\begin{aligned}
m & =3 \\
a & =6.0 \times 10^{-5} \mathrm{~m} \\
y & =2.0 \times 10^{-3} \mathrm{~m} \\
L & =1.0 \times 10^{-1} \mathrm{~m} \\
y & =\frac{m \lambda L}{a} \\
\left(2.0 \times 10^{-3} \mathrm{~m}\right) & =\frac{(3) \lambda\left(1.0 \times 10^{-1} \mathrm{~m}\right)}{\left(6.0 \times 10^{-5} \mathrm{~m}\right)} \\
\lambda & =4.0 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

gpb.org/physics-motion

Unit 6H

Light Diffraction \& Interference Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.

4. Which minimum is located 0.09 m above the center of the screen that is located 0.6 m from a single slit that is $1.0 \times 10^{-5} \mathrm{~m}$ wide for light with a wavelength of $5.0 \times 10^{-7} \mathrm{~m}$?

$$
\begin{aligned}
& a= 1.0 \times 10^{-5} \mathrm{~m} \\
& y= 0.09 \mathrm{~m} \\
& L= 0.6 \mathrm{~m} \\
& \lambda=5.0 \times 10^{-7} \mathrm{~m} \\
& y=\frac{m \lambda L}{a} \\
&(0.09 \mathrm{~m})= \frac{m\left(5.0 \times 10^{-7} \mathrm{~m}\right)(0.6 \mathrm{~m})}{\left(1.0 \times 10^{-5} \mathrm{~m}\right)} \\
& m= 3
\end{aligned}
$$

5. How far above the center point of the screen will the second bright spot be when green light, with a wavelength of $5.0 \times 10^{-7} \mathrm{~m}$ that passes through two slits that are $7.5 \times 10^{-5} \mathrm{~m}$ apart shines on a screen that is 0.10 m from the slits?

$$
\begin{gathered}
b=7.5 \times 10^{-5} \mathrm{~m} \\
L=0.10 \mathrm{~m} \\
\lambda=5.0 \times 10^{-7} \mathrm{~m} \\
m=2 \\
y=\frac{m \lambda L}{b} \\
y=\frac{(2)\left(5.0 \times 10^{-7} \mathrm{~m}\right)(0.10 \mathrm{~m})}{\left(7.5 \times 10^{-5} \mathrm{~m}\right)} \\
y=1.33 \times 10^{-3} \mathrm{~m}
\end{gathered}
$$

6. The first maximum line is $2.5 \times 10^{-5} \mathrm{~m}$ above the center of a screen when orange light, with a wavelength of $6.0 \times 10^{-7} \mathrm{~m}$, is shown upon two slits that are $5.0 \times 10^{-4} \mathrm{~m}$ apart. How far is the screen from the slits?

$$
\begin{aligned}
b & =5.0 \times 10^{-4} \mathrm{~m} \\
y & =2.5 \times 10^{-5} \mathrm{~m} \\
\lambda & =6.0 \times 10^{-7} \mathrm{~m} \\
m= & 1 \\
y & =\frac{m \lambda L}{b} \\
2.5 \times 10^{-5} m & =\frac{(1)\left(6.0 \times 10^{-7} \mathrm{~m}\right) L}{\left(5.0 \times 10^{-4} \mathrm{~m}\right)} \\
L & =2.08 \times 10^{-2} \mathrm{~m}
\end{aligned}
$$

Unit 6H

Work each of the following problems. SHOW ALL WORK.
7. A screen is located 0.30 m from a barrier with two slits. Violet light, with a wavelength of $4.0 \times 10^{-7} \mathrm{~m}$, is shown upon the barrier. If the third maximum is $\mathbf{0 . 0 6} \mathbf{~ m}$ above the center of the screen, how far apart are the two slits from each other?

$$
\begin{gathered}
L=0.30 \mathrm{~m} \\
y=0.06 \mathrm{~m} \\
\lambda=4.0 \times 10^{-7} \mathrm{~m} \\
m=3 \\
y=\frac{m \lambda L}{b} \\
0.06 m=\frac{(3)\left(4.0 \times 10^{-7} \mathrm{~m}\right)(0.30 \mathrm{~m})}{b} \\
b=6.0 \times 10^{-6} \mathrm{~m}
\end{gathered}
$$

8. Which maximum is located 0.04 m above the center of the screen that is located 0.34 m from a barrier with two slits that are separated by $2.0 \times 10^{-5} \mathrm{~m}$ when yellow light, with a wavelength of $5.8 \times 10^{-7} \mathrm{~m}$?

$$
\begin{aligned}
& L=0.34 \mathrm{~m} \\
& y=0.04 \mathrm{~m} \\
& \lambda=5.8 \times 10^{-7} \mathrm{~m} \\
& b= 2.0 \times 10^{-5} \mathrm{~m} \\
& y=\frac{m \lambda L}{b} \\
& 0.04 m= \frac{m\left(5.8 \times 10^{-7} \mathrm{~m}\right)(0.34 \mathrm{~m})}{2.0 \times 10^{-5} \mathrm{~m}} \\
& m=4.06
\end{aligned}
$$

9. Where will the first minimum be located when green light, with a wavelength of $5.5 \times 10^{-7} \mathrm{~m}$, is shown upon a barrier with two slits separated by $2.5 \times 10^{-5} \mathrm{~m}$ upon a screen that is 0.75 m from the barrier?

$$
\begin{gathered}
L=0.75 \mathrm{~m} \\
m=0.5 \\
\lambda=5.5 \times 10^{-7} \mathrm{~m} \\
b=2.5 \times 10^{-5} \mathrm{~m} \\
y=\frac{m \lambda L}{b} \\
y=\frac{(0.5)\left(5.5 \times 10^{-7} \mathrm{~m}\right)(0.75 \mathrm{~m})}{2.5 \times 10^{-5} \mathrm{~m}} \\
y=8.25 \times 10^{-3} \mathrm{~m}
\end{gathered}
$$

