

Unit 6H Light Diffraction & Interference Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.

1. How far from above the center point of the screen will the first mimimum be when red light, with a wavelength of 7.0 x 10⁻⁷ m that passes through a single slit that is 2.0 x 10⁻⁵ m that is 0.50 m from the screen?

$$m = 1$$

$$\lambda = 7.0 \times 10^{-7} m$$

$$a = 2.0 \times 10^{-5} m$$

$$L = 0.50 m$$

$$y = \frac{m\lambda L}{a}$$

$$y = \frac{(1)(7.0 \times 10^{-7} m)(0.50 m)}{(2.0 \times 10^{-5} m)}$$

$$y = 0.0175 m$$

2. The first minimum line is 5.0 x 10⁻⁴ m above the center of the screen when blue light, with a wavelength of 4.5 x 10⁻⁷ m, is shown upon a single slit that is 4.0 x 10⁻⁴ m wide. How far is the screen from the slit?

$$m = 1$$

$$\lambda = 4.5 \times 10^{-7} m$$

$$a = 4.0 \times 10^{-4} m$$

$$y = 5.0 \times 10^{-4} m$$

$$y = \frac{m\lambda L}{a}$$

$$(5.0 \times 10^{-4} m) = \frac{(1)(4.5 \times 10^{-7} m)L}{(4.0 \times 10^{-4} m)}$$

$$L = 0.44 m$$

3. What is the wavelength of light that is shown upon a single slit that is 6.0 x 10⁻⁵ m wide and is 1.0 x 10⁻¹ m from a screen on which the third minimum is 2.0 x 10⁻³ m below the central maximum?

$$m = 3$$

 $a = 6.0 \times 10^{-5} m$
 $y = 2.0 \times 10^{-3} m$
 $L = 1.0 \times 10^{-1} m$
 $y = \frac{m\lambda L}{a}$
 $(2.0 \times 10^{-3} m) = \frac{(3)\lambda(1.0 \times 10^{-1} m)}{(6.0 \times 10^{-5} m)}$
 $\lambda = 4.0 \times 10^{-7} m$

questions continued on next page Unit 6H Practice Problems TEACHER

Copyright © 2018 Georgia Public Broadcasting. All rights reserved. Use or distribution by an unintended recipient is prohibited.

Unit 6H Light Diffraction & Interference Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.

4. Which minimum is located 0.09 m above the center of the screen that is located 0.6 m from a single slit that is 1.0 x 10⁻⁵ m wide for light with a wavelength of 5.0 x 10⁻⁷ m?

$$a = 1.0 \times 10^{-5} m$$

$$y = 0.09 m$$

$$L = 0.6 m$$

$$\lambda = 5.0 \times 10^{-7} m$$

$$y = \frac{m\lambda L}{a}$$

$$(0.09 m) = \frac{m(5.0 \times 10^{-7} m)(0.6 m)}{(1.0 \times 10^{-5} m)}$$

$$m = 3$$

5. How far above the center point of the screen will the second bright spot be when green light, with a wavelength of 5.0 x 10⁻⁷ m that passes through two slits that are 7.5 x 10⁻⁵ m apart shines on a screen that is 0.10 m from the slits?

$$b = 7.5 \times 10^{\circ} m$$

$$L = 0.10 m$$

$$\lambda = 5.0 \times 10^{-7} m$$

$$m = 2$$

$$y = \frac{m\lambda L}{b}$$

$$y = \frac{(2)(5.0 \times 10^{-7} m)(0.10 m)}{(7.5 \times 10^{-5} m)}$$

$$y = 1.33 \times 10^{-3} m$$

6. The first maximum line is 2.5 x 10⁻⁵ m above the center of a screen when orange light, with a wavelength of 6.0 x 10⁻⁷ m, is shown upon two slits that are 5.0 x 10⁻⁴ m apart. How far is the screen from the slits?

$$b = 5.0 \times 10^{-4} m$$

$$y = 2.5 \times 10^{-5} m$$

$$\lambda = 6.0 \times 10^{-7} m$$

$$m = 1$$

$$y = \frac{m\lambda L}{b}$$

$$2.5 \times 10^{-5} m = \frac{(1)(6.0 \times 10^{-7} m)L}{(5.0 \times 10^{-4} m)}$$

$$L = 2.08 \times 10^{-2} m$$

questions continued on next page Unit 6H Practice Problems TEACHER

Copyright © 2018 Georgia Public Broadcasting. All rights reserved. Use or distribution by an unintended recipient is prohibited.

Unit 6H Light Diffraction & Interference Practice Problems TEACHER

Work each of the following problems. SHOW ALL WORK.

7. A screen is located 0.30 m from a barrier with two slits. Violet light, with a wavelength of 4.0 x 10⁻⁷ m, is shown upon the barrier. If the third maximum is 0.06 m above the center of the screen, how far apart are the two slits from each other?

$$L = 0.30 \, m$$

$$y = 0.06 \, m$$

$$\lambda = 4.0 \times 10^{-7} \, m$$

$$m = 3$$

$$y = \frac{m\lambda L}{b}$$

$$0.06 \, m = \frac{(3)(4.0 \times 10^{-7} \, m)(0.30 \, m)}{b}$$

$$b = 6.0 \times 10^{-6} \, m$$

8. Which maximum is located 0.04 m above the center of the screen that is located 0.34 m from a barrier with two slits that are separated by 2.0 x 10⁻⁵ m when yellow light, with a wavelength of 5.8 x 10⁻⁷ m?

$$L = 0.34 m$$

$$y = 0.04 m$$

$$\lambda = 5.8 \times 10^{-7} m$$

$$b = 2.0 \times 10^{-5} m$$

$$y = \frac{m\lambda L}{b}$$

$$0.04 m = \frac{m(5.8 \times 10^{-7} m)(0.34 m)}{2.0 \times 10^{-5} m}$$

$$m = 4.06$$

9. Where will the first minimum be located when green light, with a wavelength of 5.5 x 10⁻⁷ m, is shown upon a barrier with two slits separated by 2.5 x 10⁻⁵ m upon a screen that is 0.75 m from the barrier?

$$L = 0.75 m$$

$$m = 0.5$$

$$\lambda = 5.5 \times 10^{-7} m$$

$$b = 2.5 \times 10^{-5} m$$

$$y = \frac{m\lambda L}{b}$$

$$y = \frac{(0.5)(5.5 \times 10^{-7} m)(0.75 m)}{2.5 \times 10^{-5} m}$$

$$y = 8.25 \times 10^{-3} m$$

Unit 6H_Practice Problems TEACHER Copyright © 2018 Georgia Public Broadcasting. All rights reserved. Use or distribution by an unintended recipient is prohibited.