Newton's $3^{\text {rd }}$ Law and Law of Gravitation

Washington Physics

Newton's Third Law

"For every action there is an EQUAL and OPPOSITE reaction.

- This law focuses on action/reaction pairs (forces)
- They NEVER cancel out

All you do is SWITCH the wording!
-PERSON on WALL -WALL on PERSON

This figure shows the force during a collision between a truck and a train. You can clearly see the forces are EQUAL and OPPOSITE. To help you understand the law better, look at this situation from the point of view of Newton's Second Law.
$F_{\text {Truck }}=F_{\text {Train }}$
$m_{\text {Truck }} A_{\text {Truck }}=M_{\text {Train }} a_{\text {Train }}$

There is a balance between the mass and acceleration. One object usually has a LARGE MASS and a SMALL ACCELERATION, while the other has a SMALL MASS (comparatively) and a LARGE ACCELERATION.

N.T.L Examples

Action: HAMMER HITS NAIL Reaction: NAIL HITS HAMMER

Action: Earth pulls on YOU Reaction: YOU pull on the earth

Newton's Law of Gravitation

What causes YOU to be pulled down? THE EARTH....or more specifically...the EARTH'S MASS. Anything that has MASS has a gravitational pull towards it.

$F_{g} \alpha M m$

What the proportionality above is saying is that for there to be a FORCE DUE TO GRAVITY on something there must be at least 2 masses involved, where one is larger than the other.

N.L.o.G.

As you move AWAY from the earth, your DISTANCE increases and your FORCE DUE TO GRAVITY decrease. This is a special INVERSE relationship called an InverseSquare.

The "r" stands for SEPARATION DISTANCE and is the distance between the CENTERS OF MASS of the 2 objects. We us the symbol "r" as it symbolizes the radius. Gravitation is closely related to circular motion as you will discover later.

N.L.o.G - Putting it all together

$$
F_{1}=F_{2}=G \frac{m_{1} \times m_{2}}{r^{2}}
$$

$$
\begin{aligned}
& F_{g} \alpha \frac{m_{1} m_{2}}{r^{2}} \\
& G=\text { constant of proportiomality } \\
& \mathrm{G}=\text { Universal Gravitational Constant } \\
& G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
& F_{g}=G \frac{m_{1} m_{2}}{r^{2}}
\end{aligned}
$$

$F_{g}=m g \rightarrow$ Use this when you are on the earth
$F_{g}=G \frac{m_{1} m_{2}}{r^{2}} \rightarrow$ Use this when you are LEAVING the earth

Try this!

Let's set the 2 equations equal to each other since they BOTH represent your weight or force due to gravity

$$
\begin{aligned}
& F_{g}=m g \rightarrow \text { Use this when youare on the earth } \\
& F_{g}=G \frac{m_{1} m_{2}}{r^{2}} \rightarrow \text { Use this when youare LEAVING the earth }
\end{aligned}
$$

$m g=G \frac{M m}{r^{2}}$
$g=G \frac{M}{r^{2}}$
$M=$ Massof the Earth $=5.97 \times 10^{24}-k g$
$r=$ radius of the Earth $=6.37 \times 10^{6}-m$

